IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i4p1643-d1060124.html
   My bibliography  Save this article

Ammonia Recovery from Livestock Manure Digestate through an Air-Bubble Stripping Reactor: Evaluation of Performance and Energy Balance

Author

Listed:
  • Alessandro Abbà

    (Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123 Brescia, Italy)

  • Marta Domini

    (Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123 Brescia, Italy)

  • Marco Baldi

    (Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy)

  • Roberta Pedrazzani

    (Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy)

  • Giorgio Bertanza

    (Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123 Brescia, Italy)

Abstract

The recovery of livestock manure, rich in nutrients, as fertilizer in agriculture, could pose the risk of an excessive load of nitrogen on the soil. Ammonia stripping is one of the available technologies for reducing the amount of nitrogen in the digestate obtained by the anaerobic digestion of manure. The study investigated the performance and energy consumption of a full-scale ammonia-stripping plant, equipped with a bubble reactor and working without the use of any alkaline reagent under semi-batch conditions. Stripping tests were conducted on the liquid fraction of the digestate, studying the current and optimized operative conditions of the plant. The main variables influencing the process were pH, temperature, airflow, and feed characteristics. In the experimental tests, the pH spontaneously increased to 10, without dosing basifying agents. Higher temperatures favoured the stripping process, the higher tested value being 68 °C. The airflow was kept equal to 15 Nm 3 h −1 m −3 digestate in the pre-stripping and to 60 Nm 3 h −1 m −3 digestate in the stripping reactors, during all tests. The energy requirement was completely satisfied by the CHP (combined heat and power) unit fed with the biogas produced by manure digestion. Results showed anaerobic digestion coupled with stripping to be a suitable solution for removing up to 81% of the ammonium with neither external energy input nor reagent dosage.

Suggested Citation

  • Alessandro Abbà & Marta Domini & Marco Baldi & Roberta Pedrazzani & Giorgio Bertanza, 2023. "Ammonia Recovery from Livestock Manure Digestate through an Air-Bubble Stripping Reactor: Evaluation of Performance and Energy Balance," Energies, MDPI, vol. 16(4), pages 1-15, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1643-:d:1060124
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/4/1643/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/4/1643/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marco Baldi & Maria Cristina Collivignarelli & Alessandro Abbà & Ilaria Benigna, 2018. "The Valorization of Ammonia in Manure Digestate by Means of Alternative Stripping Reactors," Sustainability, MDPI, vol. 10(9), pages 1-14, August.
    2. Paul J. A. Withers & Colin Neal & Helen P. Jarvie & Donnacha G. Doody, 2014. "Agriculture and Eutrophication: Where Do We Go from Here?," Sustainability, MDPI, vol. 6(9), pages 1-23, September.
    3. Ali Heidarzadeh Vazifehkhoran & Alberto Finzi & Francesca Perazzolo & Elisabetta Riva & Omar Ferrari & Giorgio Provolo, 2022. "Nitrogen Recovery from Different Livestock Slurries with an Innovative Stripping Process," Sustainability, MDPI, vol. 14(13), pages 1-17, June.
    4. Barampouti, E.M. & Mai, S. & Malamis, D. & Moustakas, K. & Loizidou, M., 2020. "Exploring technological alternatives of nutrient recovery from digestate as a secondary resource," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    5. Palakodeti, Advait & Azman, Samet & Rossi, Barbara & Dewil, Raf & Appels, Lise, 2021. "A critical review of ammonia recovery from anaerobic digestate of organic wastes via stripping," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oluwafunmilayo Abiola Aworanti & Oluseye Omotoso Agbede & Samuel Enahoro Agarry & Ayobami Olu Ajani & Oyetola Ogunkunle & Opeyeolu Timothy Laseinde & S. M. Ashrafur Rahman & Islam Md Rizwanul Fattah, 2023. "Decoding Anaerobic Digestion: A Holistic Analysis of Biomass Waste Technology, Process Kinetics, and Operational Variables," Energies, MDPI, vol. 16(8), pages 1-36, April.
    2. Ester Scotto di Perta & Raffaele Grieco & Stefano Papirio & Giovanni Esposito & Elena Cervelli & Marco Bovo & Stefania Pindozzi, 2023. "Ammonia Air Stripping from Different Livestock Effluents Prior to and after Anaerobic Digestion," Sustainability, MDPI, vol. 15(12), pages 1-10, June.
    3. Alessandro Abbà & Marta Domini & Marco Baldi & Maria Cristina Collivignarelli & Giorgio Bertanza, 2023. "Investigation of the Main Parameters Influencing the Kinetics of an Ammonia Stripping Plant Treating Swine Digestate," Sustainability, MDPI, vol. 15(13), pages 1-14, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ester Scotto di Perta & Raffaele Grieco & Stefano Papirio & Giovanni Esposito & Elena Cervelli & Marco Bovo & Stefania Pindozzi, 2023. "Ammonia Air Stripping from Different Livestock Effluents Prior to and after Anaerobic Digestion," Sustainability, MDPI, vol. 15(12), pages 1-10, June.
    2. Ali Heidarzadeh Vazifehkhoran & Alberto Finzi & Francesca Perazzolo & Elisabetta Riva & Omar Ferrari & Giorgio Provolo, 2022. "Nitrogen Recovery from Different Livestock Slurries with an Innovative Stripping Process," Sustainability, MDPI, vol. 14(13), pages 1-17, June.
    3. Khoshnevisan, Benyamin & He, Li & Xu, Mingyi & Valverde-Pérez, Borja & Sillman, Jani & Mitraka, Georgia-Christina & Kougias, Panagiotis G. & Zhang, Yifeng & Yan, Shuiping & Ji, Long & Carbajales-Dale,, 2022. "From renewable energy to sustainable protein sources: Advancement, challenges, and future roadmaps," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    4. Laima Česonienė & Daiva Šileikienė & Vitas Marozas & Laura Čiteikė, 2021. "Influence of Anthropogenic Loads on Surface Water Status: A Case Study in Lithuania," Sustainability, MDPI, vol. 13(8), pages 1-15, April.
    5. Ilkka Leinonen, 2019. "Achieving Environmentally Sustainable Livestock Production," Sustainability, MDPI, vol. 11(1), pages 1-5, January.
    6. Kofi Armah Boakye-Yiadom & Alessio Ilari & Valentina Bisinella & Ester Foppa Pedretti & Daniele Duca, 2023. "Environmental Impact Assessment of Frozen Peas Production from Conventional and Organic Farming in Italy," Sustainability, MDPI, vol. 15(18), pages 1-20, September.
    7. Harjinder Kaur & Raghava R Kommalapati, 2021. "Biochemical Methane Potential and Kinetic Parameters of Goat Manure at Various Inoculum to Substrate Ratios," Sustainability, MDPI, vol. 13(22), pages 1-10, November.
    8. Marlena Gołaś & Piotr Sulewski & Adam Wąs & Anna Kłoczko-Gajewska & Kinga Pogodzińska, 2020. "On the Way to Sustainable Agriculture—Eco-Efficiency of Polish Commercial Farms," Agriculture, MDPI, vol. 10(10), pages 1-24, September.
    9. Leushantha Mudaly & Michael van der Laan, 2020. "Interactions between Irrigated Agriculture and Surface Water Quality with a Focus on Phosphate and Nitrate in the Middle Olifants Catchment, South Africa," Sustainability, MDPI, vol. 12(11), pages 1-25, May.
    10. Ibrahim, Muhammad Asim & Johansson, Marie, 2022. "Combating climate change – What, where and how to implement adaptive measures in the agriculture sector of Öland, Sweden, keeping in view the constraints of carrying capacities and risk of maladaptati," Land Use Policy, Elsevier, vol. 122(C).
    11. Nicola Di Costanzo & Alessandra Cesaro & Francesco Di Capua & Giovanni Esposito, 2021. "Exploiting the Nutrient Potential of Anaerobically Digested Sewage Sludge: A Review," Energies, MDPI, vol. 14(23), pages 1-25, December.
    12. Luca Attene & Andrea Deiana & Alessandra Carucci & Giorgia De Gioannis & Fabiano Asunis & Claudio Ledda, 2022. "Efficient Nitrogen Recovery from Agro-Energy Effluents for Cyanobacteria Cultivation ( Spirulina )," Sustainability, MDPI, vol. 15(1), pages 1-14, December.
    13. Mohammad A. T. Alsheyab & Sigrid Kusch-Brandt, 2018. "Potential Recovery Assessment of the Embodied Resources in Qatar’s Wastewater," Sustainability, MDPI, vol. 10(9), pages 1-16, August.
    14. Radovan Savic & Milica Stajic & Boško Blagojević & Atila Bezdan & Milica Vranesevic & Vesna Nikolić Jokanović & Aleksandar Baumgertel & Marina Bubalo Kovačić & Jelena Horvatinec & Gabrijel Ondrasek, 2022. "Nitrogen and Phosphorus Concentrations and Their Ratios as Indicators of Water Quality and Eutrophication of the Hydro-System Danube–Tisza–Danube," Agriculture, MDPI, vol. 12(7), pages 1-17, June.
    15. Francesco Facchini & Giovanni Mummolo & Micaela Vitti, 2021. "Scenario Analysis for Selecting Sewage Sludge-to-Energy/Matter Recovery Processes," Energies, MDPI, vol. 14(2), pages 1-21, January.
    16. Pavel ROSENDORF & Petr VYSKOČ & Hana PRCHALOVÁ & Daniel FIALA, 2016. "Estimated contribution of selected non-point pollution sources to the phosphorus and nitrogen loads in water bodies of the Vltava river basin," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 11(3), pages 196-204.
    17. Ewa Szalińska & Paulina Orlińska-Woźniak & Paweł Wilk, 2018. "Nitrate Vulnerable Zones Revision in Poland—Assessment of Environmental Impact and Land Use Conflicts," Sustainability, MDPI, vol. 10(9), pages 1-16, September.
    18. Advait Palakodeti & Samet Azman & Raf Dewil & Lise Appels, 2022. "Ammonia Recovery from Organic Waste Digestate via Gas–Liquid Stripping: Application of the Factorial Design of Experiments and Comparison of the Influence of the Stripping Gas," Sustainability, MDPI, vol. 14(24), pages 1-13, December.
    19. Palakodeti, Advait & Azman, Samet & Rossi, Barbara & Dewil, Raf & Appels, Lise, 2021. "A critical review of ammonia recovery from anaerobic digestate of organic wastes via stripping," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    20. Ming Tang & Huchang Liao & Zhengjun Wan & Enrique Herrera-Viedma & Marc A. Rosen, 2018. "Ten Years of Sustainability (2009 to 2018): A Bibliometric Overview," Sustainability, MDPI, vol. 10(5), pages 1-21, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1643-:d:1060124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.