IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v55y2013icp260-265.html
   My bibliography  Save this article

Mesophilic and thermophilic anaerobic co-digestion of waste activated sludge and source sorted biowaste in pilot- and full-scale reactors

Author

Listed:
  • Cavinato, Cristina
  • Bolzonella, David
  • Pavan, Paolo
  • Fatone, Francesco
  • Cecchi, Franco

Abstract

The paper presents the results of a pilot- and full-scale experimental campaign on the anaerobic co-digestion of waste activated sludge and biowaste both in mesophilic and thermophilic conditions. The study demonstrated the possibility to increase the specific biogas production from 0.34 to 0.49 m3/kgTVS and the gas production rate from 0.53 to 0.78 m3per m3 of reactor per day changing the reactor temperature from the mesophilic (37 °C) to the thermophilic (55 °C) range. The experimental work was carried out at pilot-scale, and the results match the full-scale behaviour. Ammonia nitrogen recycled from the anaerobic digestion section to the wastewater treatment plant accounted for about 4% of the total nitrogen loading. Digestate characteristics in terms of biological stability and heavy metals content suggested the opportunity of a short time post-aerobic stabilisation, leading to a high quality compost product.

Suggested Citation

  • Cavinato, Cristina & Bolzonella, David & Pavan, Paolo & Fatone, Francesco & Cecchi, Franco, 2013. "Mesophilic and thermophilic anaerobic co-digestion of waste activated sludge and source sorted biowaste in pilot- and full-scale reactors," Renewable Energy, Elsevier, vol. 55(C), pages 260-265.
  • Handle: RePEc:eee:renene:v:55:y:2013:i:c:p:260-265
    DOI: 10.1016/j.renene.2012.12.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148113000062
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2012.12.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Appels, Lise & Lauwers, Joost & Degrève, Jan & Helsen, Lieve & Lievens, Bart & Willems, Kris & Van Impe, Jan & Dewil, Raf, 2011. "Anaerobic digestion in global bio-energy production: Potential and research challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4295-4301.
    2. Liu, Xiao & Gao, Xingbao & Wang, Wei & Zheng, Lei & Zhou, Yingjun & Sun, Yifei, 2012. "Pilot-scale anaerobic co-digestion of municipal biomass waste: Focusing on biogas production and GHG reduction," Renewable Energy, Elsevier, vol. 44(C), pages 463-468.
    3. Zupančič, G.D. & Roš, M., 2003. "Heat and energy requirements in thermophilic anaerobic sludge digestion," Renewable Energy, Elsevier, vol. 28(14), pages 2255-2267.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Di Maria, Francesco & Sordi, Alessio & Cirulli, Giuseppe & Micale, Caterina, 2015. "Amount of energy recoverable from an existing sludge digester with the co-digestion with fruit and vegetable waste at reduced retention time," Applied Energy, Elsevier, vol. 150(C), pages 9-14.
    2. Ghasimi, Dara S.M. & de Kreuk, Merle & Maeng, Sung Kyu & Zandvoort, Marcel H. & van Lier, Jules B., 2016. "High-rate thermophilic bio-methanation of the fine sieved fraction from Dutch municipal raw sewage: Cost-effective potentials for on-site energy recovery," Applied Energy, Elsevier, vol. 165(C), pages 569-582.
    3. Di Maria, Francesco & Micale, Caterina & Contini, Stefano, 2016. "Energetic and environmental sustainability of the co-digestion of sludge with bio-waste in a life cycle perspective," Applied Energy, Elsevier, vol. 171(C), pages 67-76.
    4. Di Maria, Francesco & Micale, Caterina, 2017. "Energetic potential of the co-digestion of sludge with bio-waste in existing wastewater treatment plant digesters: A case study of an Italian province," Energy, Elsevier, vol. 136(C), pages 110-116.
    5. Tiwary, A. & Williams, I.D. & Pant, D.C. & Kishore, V.V.N., 2015. "Emerging perspectives on environmental burden minimisation initiatives from anaerobic digestion technologies for community scale biomass valorisation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 883-901.
    6. Omar, M.N. & Samak, A.A. & Keshek, M.H. & Elsisi, S.F., 2020. "Simulation and validation model for using the energy produced from broiler litter waste in their house and its requirement of energy," Renewable Energy, Elsevier, vol. 159(C), pages 920-928.
    7. Edwards, Joel & Othman, Maazuza & Burn, Stewart, 2015. "A review of policy drivers and barriers for the use of anaerobic digestion in Europe, the United States and Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 815-828.
    8. De Clercq, Djavan & Wen, Zongguo & Fei, Fan, 2017. "Economic performance evaluation of bio-waste treatment technology at the facility level," Resources, Conservation & Recycling, Elsevier, vol. 116(C), pages 178-184.
    9. Gahyun Baek & Jaai Kim & Jinsu Kim & Changsoo Lee, 2018. "Role and Potential of Direct Interspecies Electron Transfer in Anaerobic Digestion," Energies, MDPI, vol. 11(1), pages 1-18, January.
    10. Safieddin Ardebili, Seyed Mohammad, 2020. "Green electricity generation potential from biogas produced by anaerobic digestion of farm animal waste and agriculture residues in Iran," Renewable Energy, Elsevier, vol. 154(C), pages 29-37.
    11. Awasthi, Mukesh Kumar & Ferreira, Jorge A. & Sirohi, Ranjna & Sarsaiya, Surendra & Khoshnevisan, Benyamin & Baladi, Samin & Sindhu, Raveendran & Binod, Parameswaran & Pandey, Ashok & Juneja, Ankita & , 2021. "A critical review on the development stage of biorefinery systems towards the management of apple processing-derived waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    12. Mohammed S. M. Al-Azzawi & Daphne Gondhalekar & Jörg E. Drewes, 2022. "Neighborhood-Scale Urban Water Reclamation with Integrated Resource Recovery for Establishing Nexus City in Munich, Germany: Pipe Dream or Reality?," Resources, MDPI, vol. 11(7), pages 1-17, July.
    13. Hagos, Kiros & Zong, Jianpeng & Li, Dongxue & Liu, Chang & Lu, Xiaohua, 2017. "Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1485-1496.
    14. Masebinu, S.O. & Akinlabi, E.T. & Muzenda, E. & Aboyade, A.O., 2019. "A review of biochar properties and their roles in mitigating challenges with anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 291-307.
    15. Alessio Siciliano & Maria Assuntina Stillitano & Carlo Limonti, 2016. "Energetic Valorization of Wet Olive Mill Wastes through a Suitable Integrated Treatment: H 2 O 2 with Lime and Anaerobic Digestion," Sustainability, MDPI, vol. 8(11), pages 1-15, November.
    16. Heerenklage, J. & Rechtenbach, D. & Atamaniuk, I. & Alassali, A. & Raga, R. & Koch, K. & Kuchta, K., 2019. "Development of a method to produce standardised and storable inocula for biomethane potential tests – Preliminary steps," Renewable Energy, Elsevier, vol. 143(C), pages 753-761.
    17. De Clercq, Djavan & Wen, Zongguo & Fan, Fei & Caicedo, Luis, 2016. "Biomethane production potential from restaurant food waste in megacities and project level-bottlenecks: A case study in Beijing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1676-1685.
    18. Pecchi, Matteo & Baratieri, Marco, 2019. "Coupling anaerobic digestion with gasification, pyrolysis or hydrothermal carbonization: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 462-475.
    19. Van Meerbeek, Koenraad & Muys, Bart & Hermy, Martin, 2019. "Lignocellulosic biomass for bioenergy beyond intensive cropland and forests," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 139-149.
    20. Kougias, P.G. & Kotsopoulos, T.A. & Martzopoulos, G.G., 2014. "Effect of feedstock composition and organic loading rate during the mesophilic co-digestion of olive mill wastewater and swine manure," Renewable Energy, Elsevier, vol. 69(C), pages 202-207.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:55:y:2013:i:c:p:260-265. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.