Modelling and optimization of modular system for power generation from a salinity gradient
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2019.03.138
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Altaee, Ali & Millar, Graeme J. & Zaragoza, Guillermo, 2016. "Integration and optimization of pressure retarded osmosis with reverse osmosis for power generation and high efficiency desalination," Energy, Elsevier, vol. 103(C), pages 110-118.
- Daniilidis, Alexandros & Vermaas, David A. & Herber, Rien & Nijmeijer, Kitty, 2014. "Experimentally obtainable energy from mixing river water, seawater or brines with reverse electrodialysis," Renewable Energy, Elsevier, vol. 64(C), pages 123-131.
- Maisonneuve, Jonathan & Pillay, Pragasen & Laflamme, Claude B., 2015. "Pressure-retarded osmotic power system model considering non-ideal effects," Renewable Energy, Elsevier, vol. 75(C), pages 416-424.
- Altaee, Ali & Zaragoza, Guillermo & Drioli, Enrico & Zhou, John, 2017. "Evaluation the potential and energy efficiency of dual stage pressure retarded osmosis process," Applied Energy, Elsevier, vol. 199(C), pages 359-369.
- Altaee, Ali & Zhou, John & Alhathal Alanezi, Adnan & Zaragoza, Guillermo, 2017. "Pressure retarded osmosis process for power generation: Feasibility, energy balance and controlling parameters," Applied Energy, Elsevier, vol. 206(C), pages 303-311.
- Sharif, Arshian & Raza, Syed Ali & Ozturk, Ilhan & Afshan, Sahar, 2019. "The dynamic relationship of renewable and nonrenewable energy consumption with carbon emission: A global study with the application of heterogeneous panel estimations," Renewable Energy, Elsevier, vol. 133(C), pages 685-691.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Satymov, Rasul & Bogdanov, Dmitrii & Dadashi, Mojtaba & Lavidas, George & Breyer, Christian, 2024. "Techno-economic assessment of global and regional wave energy resource potentials and profiles in hourly resolution," Applied Energy, Elsevier, vol. 364(C).
- Yan, Lu & Huang, Yuewu & Sun, Wenchao, 2024. "Efficient low-grade waste heat recovery from concentrated photovoltaic cells through a thermolytic pressure retarded osmosis heat engine," Energy, Elsevier, vol. 308(C).
- Milad Shadman & Corbiniano Silva & Daiane Faller & Zhijia Wu & Luiz Paulo de Freitas Assad & Luiz Landau & Carlos Levi & Segen F. Estefen, 2019. "Ocean Renewable Energy Potential, Technology, and Deployments: A Case Study of Brazil," Energies, MDPI, vol. 12(19), pages 1-37, September.
- Bassel A. Abdelkader & Mostafa H. Sharqawy, 2022. "Challenges Facing Pressure Retarded Osmosis Commercialization: A Short Review," Energies, MDPI, vol. 15(19), pages 1-24, October.
- Chunyan, Ling & Jingzhe, Lei & Way, Kuo, 2022. "Bayesian support vector machine for optimal reliability design of modular systems," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
- Ali Altaee & Nahawand AlZainati, 2020. "Novel Thermal Desalination Brine Reject-Sewage Effluent Salinity Gradient for Power Generation and Dilution of Brine Reject," Energies, MDPI, vol. 13(7), pages 1-14, April.
- Abdelkader, Bassel A. & Navas, Daniel Ruiz & Sharqawy, Mostafa H., 2023. "A novel spiral wound module design for harvesting salinity gradient energy using pressure retarded osmosis," Renewable Energy, Elsevier, vol. 203(C), pages 542-553.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Maisonneuve, Jonathan & Chintalacheruvu, Sanjana, 2019. "Increasing osmotic power and energy with maximum power point tracking," Applied Energy, Elsevier, vol. 238(C), pages 683-695.
- Ortega-Delgado, B. & Giacalone, F. & Cipollina, A. & Papapetrou, M. & Kosmadakis, G. & Tamburini, A. & Micale, G., 2019. "Boosting the performance of a Reverse Electrodialysis – Multi-Effect Distillation Heat Engine by novel solutions and operating conditions," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Tufa, Ramato Ashu & Pawlowski, Sylwin & Veerman, Joost & Bouzek, Karel & Fontananova, Enrica & di Profio, Gianluca & Velizarov, Svetlozar & Goulão Crespo, João & Nijmeijer, Kitty & Curcio, Efrem, 2018. "Progress and prospects in reverse electrodialysis for salinity gradient energy conversion and storage," Applied Energy, Elsevier, vol. 225(C), pages 290-331.
- Altaee, Ali & Zhou, John & Alhathal Alanezi, Adnan & Zaragoza, Guillermo, 2017. "Pressure retarded osmosis process for power generation: Feasibility, energy balance and controlling parameters," Applied Energy, Elsevier, vol. 206(C), pages 303-311.
- Manzoor, Husnain & Selam, Muaz A. & Abdur Rahman, Fahim Bin & Adham, Samer & Castier, Marcelo & Abdel-Wahab, Ahmed, 2020. "A tool for assessing the scalability of pressure-retarded osmosis (PRO) membranes," Renewable Energy, Elsevier, vol. 149(C), pages 987-999.
- Mai, Van-Phung & Yang, Ruey-Jen, 2020. "Boosting power generation from salinity gradient on high-density nanoporous membrane using thermal effect," Applied Energy, Elsevier, vol. 274(C).
- He, Wei & Wang, Yang & Elyasigomari, Vahid & Shaheed, Mohammad Hasan, 2016. "Evaluation of the detrimental effects in osmotic power assisted reverse osmosis (RO) desalination," Renewable Energy, Elsevier, vol. 93(C), pages 608-619.
- Yagnambhatt, Sanjana & Khanmohammadi, Saber & Maisonneuve, Jonathan, 2024. "Demonstration of a real-time maximum power point tracker for salt gradient osmotic power systems," Applied Energy, Elsevier, vol. 376(PA).
- Ali Altaee & Nahawand AlZainati, 2020. "Novel Thermal Desalination Brine Reject-Sewage Effluent Salinity Gradient for Power Generation and Dilution of Brine Reject," Energies, MDPI, vol. 13(7), pages 1-14, April.
- Bargiacchi, Eleonora & Orciuolo, Francesco & Ferrari, Lorenzo & Desideri, Umberto, 2020. "Use of Pressure-Retarded-Osmosis to reduce Reverse Osmosis energy consumption by exploiting hypersaline flows," Energy, Elsevier, vol. 211(C).
- Vo, D.H. & Nguyen, H.M. & Vo, A.T. & McAleer, M.J., 2019. "CO2 Emissions, Energy Consumption and Economic Growth," Econometric Institute Research Papers EI2019-11, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Wu, Xi & Sun, Dexin & Lv, Junyi & Lv, Yibo & Xu, Shiming & Zhu, Xiaojing, 2025. "The spacer characteristic effect on hydrogen and electricity co-generation of a reverse electrodialysis stack driven by the salinity gradient of aqueous potassium acetate solutions," Energy, Elsevier, vol. 331(C).
- Maisonneuve, Jonathan & Laflamme, Claude B. & Pillay, Pragasen, 2016. "Experimental investigation of pressure retarded osmosis for renewable energy conversion: Towards increased net power," Applied Energy, Elsevier, vol. 164(C), pages 425-435.
- Wajeeha Aslam & Syed Tehseen Jawaid, 2025. "Green banking adoption practices: the pathway of meeting sustainable goals," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(1), pages 1015-1040, January.
- Hossain, Mohammad Razib & Singh, Sanjeet & Sharma, Gagan Deep & Apostu, Simona-Andreea & Bansal, Pooja, 2023. "Overcoming the shock of energy depletion for energy policy? Tracing the missing link between energy depletion, renewable energy development and decarbonization in the USA," Energy Policy, Elsevier, vol. 174(C).
- Eregha, Perekunah Bright & Adeleye, Bosede Ngozi & Ogunrinola, Ifeoluwa, 2022. "Pollutant emissions, energy use and real output in Sub-Saharan Africa (SSA) countries," Journal of Policy Modeling, Elsevier, vol. 44(1), pages 64-82.
- Namahoro, J.P. & Wu, Q. & Su, H., 2023. "Wind energy, industrial-economic development and CO2 emissions nexus: Do droughts matter?," Energy, Elsevier, vol. 278(PA).
- Nouf Alsulamy & Aqsa Shoukat & Islam Elgammal, 2025. "Business Strategies for Managing Non-Renewable Energy Dynamics in Saudi Arabia’s Manufacturing Sector," Sustainability, MDPI, vol. 17(10), pages 1-17, May.
- Khayet, Mohamed & Aytaç, Ersin & Essalhi, Mohamed & Cipollina, Andrea & García-Fernández, Loreto & Contreras-Martínez, Jorge & García-Payo, Carmen & Ruiz-García, Alejandro & Figoli, Alberto, 2025. "Elucidating the dynamics of salinity gradient energy research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 219(C).
- Müzeyyen Merve Şerifoğlu & Pelin Öge Güney, 2025. "Is the environmental Kuznets curve (EKC) hypothesis still valid for OECD countries? A comprehensive analysis across multiple sources," Quality & Quantity: International Journal of Methodology, Springer, vol. 59(1), pages 547-573, February.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:141:y:2019:i:c:p:139-147. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/eee/renene/v141y2019icp139-147.html