IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v134y2019icp1369-1380.html
   My bibliography  Save this article

The economy-wide effects of large-scale renewable electricity expansion in Europe: The role of integration costs

Author

Listed:
  • Bachner, Gabriel
  • Steininger, Karl W.
  • Williges, Keith
  • Tuerk, Andreas

Abstract

With the increasing share of renewables in electricity generation in Europe, implied economy-wide macroeconomic feedbacks and spill-over effects to other sectors and actors are of rising importance. We quantify the macroeconomic effects of a large-scale expansion of wind and photovoltaics (PV) in Europe, employing a global multi-regional multi-sectoral computable general equilibrium (CGE) model. We place special emphasis on electricity market integration costs, which have so far been neglected not only in most bottom-up technology comparisons, but also in macroeconomic studies. We find that the societal welfare effects of a large-scale expansion of wind and PV tend to be positive; however, when integration costs are taken into account, positive welfare effects are either much smaller or even become negative, depending very much on regional characteristics, such as the prevailing electricity mix, weighted average costs of capital (WACC) or capacity factors. We also show that macroeconomic feedback effects raise generation costs above what is anticipated from a bottom-up perspective, since the high capital intensities of renewable electricity generation technologies drive up economy-wide capital prices. This may imply that they are no longer competitive when installed at large-scales.

Suggested Citation

  • Bachner, Gabriel & Steininger, Karl W. & Williges, Keith & Tuerk, Andreas, 2019. "The economy-wide effects of large-scale renewable electricity expansion in Europe: The role of integration costs," Renewable Energy, Elsevier, vol. 134(C), pages 1369-1380.
  • Handle: RePEc:eee:renene:v:134:y:2019:i:c:p:1369-1380
    DOI: 10.1016/j.renene.2018.09.052
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118311157
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.09.052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Angel Aguiar & Badri Narayanan & Robert McDougall, 2016. "An Overview of the GTAP 9 Data Base," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 1(1), pages 181-208, June.
    2. Hirth, Lion & Ueckerdt, Falko & Edenhofer, Ottmar, 2015. "Integration costs revisited – An economic framework for wind and solar variability," Renewable Energy, Elsevier, vol. 74(C), pages 925-939.
    3. Erin Baker & Meredith Fowlie & Derek Lemoine & Stanley S. Reynolds, 2013. "The Economics of Solar Electricity," Annual Review of Resource Economics, Annual Reviews, vol. 5(1), pages 387-426, June.
    4. Severin Borenstein, 2012. "The Private and Public Economics of Renewable Electricity Generation," Journal of Economic Perspectives, American Economic Association, vol. 26(1), pages 67-92, Winter.
    5. Grossmann, Wolf D. & Grossmann, Iris & Steininger, Karl W., 2013. "Distributed solar electricity generation across large geographic areas, Part I: A method to optimize site selection, generation and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 831-843.
    6. Hirth, Lion, 2013. "The market value of variable renewables," Energy Economics, Elsevier, vol. 38(C), pages 218-236.
    7. Schinko, Thomas & Bednar-Friedl, Birgit & Steininger, Karl W. & Grossmann, Wolf D., 2014. "Switching to carbon-free production processes: Implications for carbon leakage and border carbon adjustment," Energy Policy, Elsevier, vol. 67(C), pages 818-831.
    8. Dimitrios Angelopoulos & Robert Brückmann & Filip JirouÅ¡ & Inga KonstantinaviÄ iÅ«tÄ— & Paul Noothout & John Psarras & Lucie Tesnière & Barbara Breitschopf, 2016. "Risks and cost of capital for onshore wind energy investments in EU countries," Energy & Environment, , vol. 27(1), pages 82-104, February.
    9. Erwin Corong & Thomas Hertel & Robert McDougall & Marinos Tsigas & Dominique van der Mensbrugghe, 2017. "The Standard GTAP Model, version 7," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 2(1), pages 1-119, June.
    10. Dai, Hancheng & Xie, Xuxuan & Xie, Yang & Liu, Jian & Masui, Toshihiko, 2016. "Green growth: The economic impacts of large-scale renewable energy development in China," Applied Energy, Elsevier, vol. 162(C), pages 435-449.
    11. Paul L. Joskow, 2011. "Comparing the Costs of Intermittent and Dispatchable Electricity Generating Technologies," American Economic Review, American Economic Association, vol. 101(3), pages 238-241, May.
    12. Kirkerud, Jon Gustav & Bolkesjø, Torjus Folsland & Trømborg, Erik, 2017. "Power-to-heat as a flexibility measure for integration of renewable energy," Energy, Elsevier, vol. 128(C), pages 776-784.
    13. Bohringer, Christoph & Rutherford, Thomas F., 2008. "Combining bottom-up and top-down," Energy Economics, Elsevier, vol. 30(2), pages 574-596, March.
    14. Paul S. Armington, 1969. "A Theory of Demand for Products Distinguished by Place of Production (Une théorie de la demande de produits différenciés d'après leur origine) (Una teoría de la demanda de productos distinguiénd," IMF Staff Papers, Palgrave Macmillan, vol. 16(1), pages 159-178, March.
    15. Bednar-Friedl, Birgit & Schinko, Thomas & Steininger, Karl W., 2012. "The relevance of process emissions for carbon leakage: A comparison of unilateral climate policy options with and without border carbon adjustment," Energy Economics, Elsevier, vol. 34(S2), pages 168-180.
    16. Hannum, Christopher & Cutler, Harvey & Iverson, Terrence & Keyser, David, 2017. "Estimating the implied cost of carbon in future scenarios using a CGE model: The Case of Colorado," Energy Policy, Elsevier, vol. 102(C), pages 500-511.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    2. Yao, Xing & Yi, Bowen & Yu, Yang & Fan, Ying & Zhu, Lei, 2020. "Economic analysis of grid integration of variable solar and wind power with conventional power system," Applied Energy, Elsevier, vol. 264(C).
    3. Matsuo, Yuhji & Endo, Seiya & Nagatomi, Yu & Shibata, Yoshiaki & Komiyama, Ryoichi & Fujii, Yasumasa, 2020. "Investigating the economics of the power sector under high penetration of variable renewable energies," Applied Energy, Elsevier, vol. 267(C).
    4. Taran Faehn & Gabriel Bachner & Robert Beach & Jean Chateau & Shinichiro Fujimori & Madanmohan Ghosh & Meriem Hamdi-Cherif & Elisa Lanzi & Sergey Paltsev & Toon Vandyck & Bruno Cunha & Rafael Garaffa , 2020. "Capturing Key Energy and Emission Trends in CGE models: Assessment of Status and Remaining Challenges," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 5(1), pages 196-272, June.
    5. Bórawski, Piotr & Bełdycka-Bórawska, Aneta & Jankowski, Krzysztof Jóżef & Dubis, Bogdan & Dunn, James W., 2020. "Development of wind energy market in the European Union," Renewable Energy, Elsevier, vol. 161(C), pages 691-700.
    6. Hwangbo, Soonho & Heo, SungKu & Yoo, ChangKyoo, 2022. "Development of deterministic-stochastic model to integrate variable renewable energy-driven electricity and large-scale utility networks: Towards decarbonization petrochemical industry," Energy, Elsevier, vol. 238(PC).
    7. Dingyi Lu & Yunqian Lu & Kexin Zhang & Chuyuan Zhang & Shao-Chao Ma, 2023. "An Application Designed for Guiding the Coordinated Charging of Electric Vehicles," Sustainability, MDPI, vol. 15(14), pages 1-16, July.
    8. Javier L'opez Prol & Karl W. Steininger & Keith Williges & Wolf D. Grossmann & Iris Grossmann, 2022. "Potential gains of long-distance trade in electricity," Papers 2205.01436, arXiv.org.
    9. López Prol, Javier & Steininger, Karl W. & Williges, Keith & Grossmann, Wolf D. & Grossmann, Iris, 2023. "Potential gains of long-distance trade in electricity," Energy Economics, Elsevier, vol. 124(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. López Prol, Javier & Steininger, Karl W. & Zilberman, David, 2020. "The cannibalization effect of wind and solar in the California wholesale electricity market," Energy Economics, Elsevier, vol. 85(C).
    2. Lion Hirth, Falko Ueckerdt, and Ottmar Edenhofer, 2016. "Why Wind Is Not Coal: On the Economics of Electricity Generation," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    3. Lion Hirth, 2015. "The Optimal Share of Variable Renewables: How the Variability of Wind and Solar Power affects their Welfare-optimal Deployment," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    4. Zerrahn, Alexander, 2017. "Wind Power and Externalities," Ecological Economics, Elsevier, vol. 141(C), pages 245-260.
    5. Romeiro, Diogo Lisbona & Almeida, Edmar Luiz Fagundes de & Losekann, Luciano, 2020. "Systemic value of electricity sources – What we can learn from the Brazilian experience?," Energy Policy, Elsevier, vol. 138(C).
    6. Lawrence Haar, 2021. "Design Flaws in United Kingdom Renewable Energy Support Scheme," Energies, MDPI, vol. 14(6), pages 1-26, March.
    7. Ren'e Aid & Matteo Basei & Huy^en Pham, 2017. "A McKean-Vlasov approach to distributed electricity generation development," Papers 1705.01302, arXiv.org, revised Nov 2019.
    8. Eising, Manuel & Hobbie, Hannes & Möst, Dominik, 2020. "Future wind and solar power market values in Germany — Evidence of spatial and technological dependencies?," Energy Economics, Elsevier, vol. 86(C).
    9. René Aïd & Matteo Basei & Huyên Pham, 2017. "The coordination of centralised and distributed generation," Working Papers hal-01517165, HAL.
    10. López Prol, Javier & Steininger, Karl W. & Williges, Keith & Grossmann, Wolf D. & Grossmann, Iris, 2023. "Potential gains of long-distance trade in electricity," Energy Economics, Elsevier, vol. 124(C).
    11. Notton, Gilles & Nivet, Marie-Laure & Voyant, Cyril & Paoli, Christophe & Darras, Christophe & Motte, Fabrice & Fouilloy, Alexis, 2018. "Intermittent and stochastic character of renewable energy sources: Consequences, cost of intermittence and benefit of forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 96-105.
    12. René Aïd & Matteo Basei & Huyên Pham, 2020. "A McKean–Vlasov approach to distributed electricity generation development," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 91(2), pages 269-310, April.
    13. Ruhnau, Oliver & Hirth, Lion & Praktiknjo, Aaron, 2020. "Heating with wind: Economics of heat pumps and variable renewables," Energy Economics, Elsevier, vol. 92(C).
    14. Mun Ho & Wolfgang Britz & Ruth Delzeit & Florian Leblanc & Roberto Roson & Franziska Schuenemann & Matthias Weitzel, 2020. "Modelling Consumption and Constructing Long-Term Baselines in Final Demand," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 5(1), pages 63-108, June.
    15. Taran Faehn & Gabriel Bachner & Robert Beach & Jean Chateau & Shinichiro Fujimori & Madanmohan Ghosh & Meriem Hamdi-Cherif & Elisa Lanzi & Sergey Paltsev & Toon Vandyck & Bruno Cunha & Rafael Garaffa , 2020. "Capturing Key Energy and Emission Trends in CGE models: Assessment of Status and Remaining Challenges," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 5(1), pages 196-272, June.
    16. Bachner, G. & Mayer, J. & Steininger, K.W. & Anger-Kraavi, A. & Smith, A. & Barker, T.S., 2020. "Uncertainties in macroeconomic assessments of low-carbon transition pathways - The case of the European iron and steel industry," Ecological Economics, Elsevier, vol. 172(C).
    17. Yu, Hyun Jin Julie, 2018. "A prospective economic assessment of residential PV self-consumption with batteries and its systemic effects: The French case in 2030," Energy Policy, Elsevier, vol. 113(C), pages 673-687.
    18. Helm, Carsten & Mier, Mathias, 2016. "Efficient diffusion of renewable energies: A roller-coaster ride," VfS Annual Conference 2016 (Augsburg): Demographic Change 145893, Verein für Socialpolitik / German Economic Association.
    19. Lion Hirth & Falko Ueckerdt & Ottmar Edenhofer, 2014. "Why Wind Is Not Coal: On the Economics of Electricity," Working Papers 2014.39, Fondazione Eni Enrico Mattei.
    20. Edenhofer, Ottmar & Hirth, Lion & Knopf, Brigitte & Pahle, Michael & Schlömer, Steffen & Schmid, Eva & Ueckerdt, Falko, 2013. "On the economics of renewable energy sources," Energy Economics, Elsevier, vol. 40(S1), pages 12-23.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:134:y:2019:i:c:p:1369-1380. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.