IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v161y2020icp691-700.html
   My bibliography  Save this article

Development of wind energy market in the European Union

Author

Listed:
  • Bórawski, Piotr
  • Bełdycka-Bórawska, Aneta
  • Jankowski, Krzysztof Jóżef
  • Dubis, Bogdan
  • Dunn, James W.

Abstract

Renewable energy sources (RES) can play a significant role in economic growth.

Suggested Citation

  • Bórawski, Piotr & Bełdycka-Bórawska, Aneta & Jankowski, Krzysztof Jóżef & Dubis, Bogdan & Dunn, James W., 2020. "Development of wind energy market in the European Union," Renewable Energy, Elsevier, vol. 161(C), pages 691-700.
  • Handle: RePEc:eee:renene:v:161:y:2020:i:c:p:691-700
    DOI: 10.1016/j.renene.2020.07.081
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120311575
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.07.081?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Enevoldsen, Peter & Sovacool, Benjamin K., 2016. "Examining the social acceptance of wind energy: Practical guidelines for onshore wind project development in France," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 178-184.
    2. Toke, David, 2011. "The UK offshore wind power programme: A sea-change in UK energy policy?," Energy Policy, Elsevier, vol. 39(2), pages 526-534, February.
    3. Child, Michael & Kemfert, Claudia & Bogdanov, Dmitrii & Breyer, Christian, 2019. "Flexible electricity generation, grid exchange and storage for the transition to a 100% renewable energy system in Europe," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 139, pages 80-101.
    4. Holmatov, B. & Hoekstra, A.Y. & Krol, M.S., 2019. "Land, water and carbon footprints of circular bioenergy production systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 224-235.
    5. Erdmenger, Christoph & Lehmann, Harry & Müschen, Klaus & Tambke, Jens & Mayr, Sebastian & Kuhnhenn, Kai, 2009. "A climate protection strategy for Germany--40% reduction of CO2 emissions by 2020 compared to 1990," Energy Policy, Elsevier, vol. 37(1), pages 158-165, January.
    6. Rentschler, Manuel U.T. & Adam, Frank & Chainho, Paulo, 2019. "Design optimization of dynamic inter-array cable systems for floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 622-635.
    7. Ioannou, Anastasia & Angus, Andrew & Brennan, Feargal, 2020. "Stochastic financial appraisal of offshore wind farms," Renewable Energy, Elsevier, vol. 145(C), pages 1176-1191.
    8. Dubis, Bogdan & Jankowski, Krzysztof Józef & Sokólski, Mateusz Mikołaj & Załuski, Dariusz & Bórawski, Piotr & Szempliński, Władysław, 2020. "Biomass yield and energy balance of fodder galega in different production technologies: An 11-year field experiment in a large-area farm in Poland," Renewable Energy, Elsevier, vol. 154(C), pages 813-825.
    9. Blanco, María Isabel, 2009. "The economics of wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1372-1382, August.
    10. Saidur, R. & Islam, M.R. & Rahim, N.A. & Solangi, K.H., 2010. "A review on global wind energy policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1744-1762, September.
    11. Lema, Rasmus & Urban, Frauke & Nordensvard, Johan & Lütkenhorst, Wilfried, 2014. "Innovation paths in wind power: insights from Denmark and Germany," IDOS Discussion Papers 17/2014, German Institute of Development and Sustainability (IDOS).
    12. Thomas B. Johansson & Nebojsa Nakicenovic, 2012. "The Global Energy Assessment," Review of Environment, Energy and Economics - Re3, Fondazione Eni Enrico Mattei, October.
    13. Helbing, Georg & Ritter, Matthias, 2020. "Improving wind turbine power curve monitoring with standardisation," Renewable Energy, Elsevier, vol. 145(C), pages 1040-1048.
    14. Cherubini, Antonello & Papini, Andrea & Vertechy, Rocco & Fontana, Marco, 2015. "Airborne Wind Energy Systems: A review of the technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1461-1476.
    15. Myhr, Anders & Bjerkseter, Catho & Ågotnes, Anders & Nygaard, Tor A., 2014. "Levelised cost of energy for offshore floating wind turbines in a life cycle perspective," Renewable Energy, Elsevier, vol. 66(C), pages 714-728.
    16. Söderholm, Patrik & Pettersson, Maria, 2011. "Offshore wind power policy and planning in Sweden," Energy Policy, Elsevier, vol. 39(2), pages 518-525, February.
    17. Grassi, Stefano & Junghans, Sven & Raubal, Martin, 2014. "Assessment of the wake effect on the energy production of onshore wind farms using GIS," Applied Energy, Elsevier, vol. 136(C), pages 827-837.
    18. Nordensvärd, Johan & Urban, Frauke, 2015. "The stuttering energy transition in Germany: Wind energy policy and feed-in tariff lock-in," Energy Policy, Elsevier, vol. 82(C), pages 156-165.
    19. Erdem, Ergin & Shi, Jing, 2011. "ARMA based approaches for forecasting the tuple of wind speed and direction," Applied Energy, Elsevier, vol. 88(4), pages 1405-1414, April.
    20. Gasol, Carles M. & Martínez, Sergio & Rigola, Miquel & Rieradevall, Joan & Anton, Assumpció & Carrasco, Juan & Ciria, Pilar & Gabarrell, Xavier, 2009. "Feasibility assessment of poplar bioenergy systems in the Southern Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 801-812, May.
    21. Bosch, Jonathan & Staffell, Iain & Hawkes, Adam D., 2018. "Temporally explicit and spatially resolved global offshore wind energy potentials," Energy, Elsevier, vol. 163(C), pages 766-781.
    22. Erasmo Cadenas & Wilfrido Rivera & Rafael Campos-Amezcua & Christopher Heard, 2016. "Wind Speed Prediction Using a Univariate ARIMA Model and a Multivariate NARX Model," Energies, MDPI, vol. 9(2), pages 1-15, February.
    23. Kaplan, Yusuf Alper, 2015. "Overview of wind energy in the world and assessment of current wind energy policies in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 562-568.
    24. Madsen, Dorte Nørgaard & Hansen, Jan Petter, 2019. "Outlook of solar energy in Europe based on economic growth characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    25. Bachner, Gabriel & Steininger, Karl W. & Williges, Keith & Tuerk, Andreas, 2019. "The economy-wide effects of large-scale renewable electricity expansion in Europe: The role of integration costs," Renewable Energy, Elsevier, vol. 134(C), pages 1369-1380.
    26. Lacal-Arántegui, Roberto, 2019. "Globalization in the wind energy industry: contribution and economic impact of European companies," Renewable Energy, Elsevier, vol. 134(C), pages 612-628.
    27. Meyerhoff, Jürgen & Ohl, Cornelia & Hartje, Volkmar, 2010. "Landscape externalities from onshore wind power," Energy Policy, Elsevier, vol. 38(1), pages 82-92, January.
    28. Jankowski, Krzysztof Józef & Dubis, Bogdan & Sokólski, Mateusz Mikołaj & Załuski, Dariusz & Bórawski, Piotr & Szempliński, Władysław, 2019. "Biomass yield and energy balance of Virginia fanpetals in different production technologies in north-eastern Poland," Energy, Elsevier, vol. 185(C), pages 612-623.
    29. de Jong, Piet & Penzer, Jeremy, 2004. "The ARMA model in state space form," Statistics & Probability Letters, Elsevier, vol. 70(1), pages 119-125, October.
    30. Staffell, Iain & Green, Richard, 2014. "How does wind farm performance decline with age?," Renewable Energy, Elsevier, vol. 66(C), pages 775-786.
    31. Watson, Simon & Moro, Alberto & Reis, Vera & Baniotopoulos, Charalampos & Barth, Stephan & Bartoli, Gianni & Bauer, Florian & Boelman, Elisa & Bosse, Dennis & Cherubini, Antonello & Croce, Alessandro , 2019. "Future emerging technologies in the wind power sector: A European perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    32. Bechtle, Philip & Schelbergen, Mark & Schmehl, Roland & Zillmann, Udo & Watson, Simon, 2019. "Airborne wind energy resource analysis," Renewable Energy, Elsevier, vol. 141(C), pages 1103-1116.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luis M. Abadie & Nestor Goicoechea, 2021. "Old Wind Farm Life Extension vs. Full Repowering: A Review of Economic Issues and a Stochastic Application for Spain," Energies, MDPI, vol. 14(12), pages 1-24, June.
    2. Qiang Deng & Michal Slaný & Huani Zhang & Xuefan Gu & Yongfei Li & Weichao Du & Gang Chen, 2021. "Synthesis of Alkyl Aliphatic Hydrazine and Application in Crude Oil as Flow Improvers," Energies, MDPI, vol. 14(15), pages 1-11, August.
    3. Stanisław Bielski & Renata Marks-Bielska & Anna Zielińska-Chmielewska & Kęstutis Romaneckas & Egidijus Šarauskis, 2021. "Importance of Agriculture in Creating Energy Security—A Case Study of Poland," Energies, MDPI, vol. 14(9), pages 1-20, April.
    4. Małgorzata Stec & Mariola Grzebyk, 2022. "Statistical Analysis of the Level of Development of Renewable Energy Sources in the Countries of the European Union," Energies, MDPI, vol. 15(21), pages 1-18, November.
    5. Piotr Bórawski & Rafał Wyszomierski & Aneta Bełdycka-Bórawska & Bartosz Mickiewicz & Beata Kalinowska & James W. Dunn & Tomasz Rokicki, 2022. "Development of Renewable Energy Sources in the European Union in the Context of Sustainable Development Policy," Energies, MDPI, vol. 15(4), pages 1-20, February.
    6. Hussain, Waqar & Khan, Sadia & Mover, Ather Hussain, 2022. "Development of quality, environment, health, and safety (QEHS) management system and its integration in operation and maintenance (O&M) of onshore wind energy industries," Renewable Energy, Elsevier, vol. 196(C), pages 220-233.
    7. Ewa Chodakowska & Joanicjusz Nazarko & Łukasz Nazarko, 2021. "ARIMA Models in Electrical Load Forecasting and Their Robustness to Noise," Energies, MDPI, vol. 14(23), pages 1-22, November.
    8. Jonek-Kowalska, Izabela, 2022. "Towards the reduction of CO2 emissions. Paths of pro-ecological transformation of energy mixes in European countries with an above-average share of coal in energy consumption," Resources Policy, Elsevier, vol. 77(C).
    9. Piotr Bórawski & Marta Guth & Aneta Bełdycka-Bórawska & Krzysztof Józef Jankowski & Andrzej Parzonko & James W. Dunn, 2020. "Investments in Polish Agriculture: How Production Factors Shape Conditions for Environmental Protection?," Sustainability, MDPI, vol. 12(19), pages 1-26, October.
    10. Dario Maradin & Bojana Olgić Draženović & Saša Čegar, 2023. "The Efficiency of Offshore Wind Energy Companies in the European Countries: A DEA Approach," Energies, MDPI, vol. 16(9), pages 1-16, April.
    11. Yana Buravleva & Decai Tang & Brandon J. Bethel, 2021. "Incentivizing Innovation: The Causal Role of Government Subsidies on Lithium-Ion Battery Research and Development," Sustainability, MDPI, vol. 13(15), pages 1-16, July.
    12. He, J.Y. & Chan, P.W. & Li, Q.S. & Lee, C.W., 2022. "Characterizing coastal wind energy resources based on sodar and microwave radiometer observations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Helena Schmidt & Gerdien de Vries & Reint Jan Renes & Roland Schmehl, 2022. "The Social Acceptance of Airborne Wind Energy: A Literature Review," Energies, MDPI, vol. 15(4), pages 1-24, February.
    2. Chen, Jincheng & Wang, Feng & Stelson, Kim A., 2018. "A mathematical approach to minimizing the cost of energy for large utility wind turbines," Applied Energy, Elsevier, vol. 228(C), pages 1413-1422.
    3. Xiaoxia Gao & Lu Xia & Lin Lu & Yonghua Li, 2019. "Analysis of Hong Kong’s Wind Energy: Power Potential, Development Constraints, and Experiences from Other Countries for Local Wind Energy Promotion Strategies," Sustainability, MDPI, vol. 11(3), pages 1-20, February.
    4. Malz, E.C. & Hedenus, F. & Göransson, L. & Verendel, V. & Gros, S., 2020. "Drag-mode airborne wind energy vs. wind turbines: An analysis of power production, variability and geography," Energy, Elsevier, vol. 193(C).
    5. Watson, Simon & Moro, Alberto & Reis, Vera & Baniotopoulos, Charalampos & Barth, Stephan & Bartoli, Gianni & Bauer, Florian & Boelman, Elisa & Bosse, Dennis & Cherubini, Antonello & Croce, Alessandro , 2019. "Future emerging technologies in the wind power sector: A European perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    6. Satir, Mert & Murphy, Fionnuala & McDonnell, Kevin, 2018. "Feasibility study of an offshore wind farm in the Aegean Sea, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2552-2562.
    7. Bosch, Jonathan & Staffell, Iain & Hawkes, Adam D., 2019. "Global levelised cost of electricity from offshore wind," Energy, Elsevier, vol. 189(C).
    8. Köktürk, G. & Tokuç, A., 2017. "Vision for wind energy with a smart grid in Izmir," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 332-345.
    9. Zheng, Chong Wei & Li, Chong Yin & Pan, Jing & Liu, Ming Yang & Xia, Lin Lin, 2016. "An overview of global ocean wind energy resource evaluations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1240-1251.
    10. McKenna, Russell & Pfenninger, Stefan & Heinrichs, Heidi & Schmidt, Johannes & Staffell, Iain & Bauer, Christian & Gruber, Katharina & Hahmann, Andrea N. & Jansen, Malte & Klingler, Michael & Landwehr, 2022. "High-resolution large-scale onshore wind energy assessments: A review of potential definitions, methodologies and future research needs," Renewable Energy, Elsevier, vol. 182(C), pages 659-684.
    11. Yiqi Chu & Chengcai Li & Yefang Wang & Jing Li & Jian Li, 2016. "A Long-Term Wind Speed Ensemble Forecasting System with Weather Adapted Correction," Energies, MDPI, vol. 9(11), pages 1-20, October.
    12. Igliński, Bartłomiej & Iglińska, Anna & Koziński, Grzegorz & Skrzatek, Mateusz & Buczkowski, Roman, 2016. "Wind energy in Poland – History, current state, surveys, Renewable Energy Sources Act, SWOT analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 19-33.
    13. Mostafa A. Rushdi & Ahmad A. Rushdi & Tarek N. Dief & Amr M. Halawa & Shigeo Yoshida & Roland Schmehl, 2020. "Power Prediction of Airborne Wind Energy Systems Using Multivariate Machine Learning," Energies, MDPI, vol. 13(9), pages 1-23, May.
    14. Brooks, Sam & Mahmood, Minhal & Roy, Rajkumar & Manolesos, Marinos & Salonitis, Konstantinos, 2023. "Self-reconfiguration simulations of turbines to reduce uneven farm degradation," Renewable Energy, Elsevier, vol. 206(C), pages 1301-1314.
    15. Luis M. Abadie & Nestor Goicoechea, 2021. "Old Wind Farm Life Extension vs. Full Repowering: A Review of Economic Issues and a Stochastic Application for Spain," Energies, MDPI, vol. 14(12), pages 1-24, June.
    16. Kamila Pronińska & Krzysztof Księżopolski, 2021. "Baltic Offshore Wind Energy Development—Poland’s Public Policy Tools Analysis and the Geostrategic Implications," Energies, MDPI, vol. 14(16), pages 1-17, August.
    17. Nakıp, Mert & Çopur, Onur & Biyik, Emrah & Güzeliş, Cüneyt, 2023. "Renewable energy management in smart home environment via forecast embedded scheduling based on Recurrent Trend Predictive Neural Network," Applied Energy, Elsevier, vol. 340(C).
    18. Kim, Kyung Jae & Lee, Hwarang & Koo, Yoonmo, 2020. "Research on local acceptance cost of renewable energy in South Korea: A case study of photovoltaic and wind power projects," Energy Policy, Elsevier, vol. 144(C).
    19. Katarzyna Chudy-Laskowska & Tomasz Pisula & Mirosław Liana & László Vasa, 2020. "Taxonomic Analysis of the Diversity in the Level of Wind Energy Development in European Union Countries," Energies, MDPI, vol. 13(17), pages 1-21, August.
    20. Zhang, Pan, 2019. "Do energy intensity targets matter for wind energy development? Identifying their heterogeneous effects in Chinese provinces with different wind resources," Renewable Energy, Elsevier, vol. 139(C), pages 968-975.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:161:y:2020:i:c:p:691-700. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.