IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v127y2018icp678-684.html
   My bibliography  Save this article

Understanding the interaction among the barriers of biodiesel production from waste cooking oil in India- an interpretive structural modeling approach

Author

Listed:
  • Avinash, A.
  • Sasikumar, P.
  • Murugesan, A.

Abstract

Regardless of fragile biodiesel market of the present day, it is foreseen that biodiesel will draw a lot of public interest throughout the world in the not too distant future. Among different feed stocks available for biodiesel production, waste cooking oil is under a major prospective for large-scale biodiesel production as it can cut down the fuel costs than other alternative feed stocks. However, there are several barriers that hinder large-scale biodiesel production from waste cooking oil. Also, there might be contextual relationships among those barriers. In this perspective, this paper aspires to identify the most influential barrier and to describe the interactions among different barriers influencing biodiesel production from waste cooking oil. For this reason, an interpretive structural modeling approach is employed to determine relationships among barriers. MICMAC analysis has additionally been carried out to classify the barriers based on dependence and driving power. The results indicate that vehicle access problem, lack of processing technology, inconsistent supply quantity and inadequate production facilities are the top-level barriers. Also, the results show that lack of political will, lack of incentives and lack of policy implementation play a very important role in the effective implementation of biodiesel production from waste cooking oil.

Suggested Citation

  • Avinash, A. & Sasikumar, P. & Murugesan, A., 2018. "Understanding the interaction among the barriers of biodiesel production from waste cooking oil in India- an interpretive structural modeling approach," Renewable Energy, Elsevier, vol. 127(C), pages 678-684.
  • Handle: RePEc:eee:renene:v:127:y:2018:i:c:p:678-684
    DOI: 10.1016/j.renene.2018.04.079
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118305044
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.04.079?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anand, B. Prem & Saravanan, C.G. & Srinivasan, C. Ananda, 2010. "Performance and exhaust emission of turpentine oil powered direct injection diesel engine," Renewable Energy, Elsevier, vol. 35(6), pages 1179-1184.
    2. C. Vasanthakumar & S. Vinodh & K. Ramesh, 2016. "Application of interpretive structural modelling for analysis of factors influencing lean remanufacturing practices," International Journal of Production Research, Taylor & Francis Journals, vol. 54(24), pages 7439-7452, December.
    3. Ramadhas, A.S. & Muraleedharan, C. & Jayaraj, S., 2005. "Performance and emission evaluation of a diesel engine fueled with methyl esters of rubber seed oil," Renewable Energy, Elsevier, vol. 30(12), pages 1789-1800.
    4. Kumaran, P. & Mazlini, Nur & Hussein, Ibrahim & Nazrain, M. & Khairul, M., 2011. "Technical feasibility studies for Langkawi WCO (waste cooking oil) derived-biodiesel," Energy, Elsevier, vol. 36(3), pages 1386-1393.
    5. Ansari, Md. Fahim & Kharb, Ravinder Kumar & Luthra, Sunil & Shimmi, S.L. & Chatterji, S., 2013. "Analysis of barriers to implement solar power installations in India using interpretive structural modeling technique," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 163-174.
    6. Chun-Pin Tseng & Cheng-Wu Chen & Yu-Ping Tu, 2011. "A new viewpoint on risk control decision models for natural disasters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(3), pages 1715-1733, December.
    7. Tsai, Wen-Tien & Lin, Chih-Chung & Yeh, Ching-Wei, 2007. "An analysis of biodiesel fuel from waste edible oil in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(5), pages 838-857, June.
    8. Robert M. Grant, 1996. "Prospering in Dynamically-Competitive Environments: Organizational Capability as Knowledge Integration," Organization Science, INFORMS, vol. 7(4), pages 375-387, August.
    9. Dufour, Javier & Iribarren, Diego, 2012. "Life cycle assessment of biodiesel production from free fatty acid-rich wastes," Renewable Energy, Elsevier, vol. 38(1), pages 155-162.
    10. R. Sivaprakasam & V. Selladurai & P. Sasikumar, 2015. "Implementation of interpretive structural modelling methodology as a strategic decision making tool in a Green Supply Chain Context," Annals of Operations Research, Springer, vol. 233(1), pages 423-448, October.
    11. Linares, Pedro & Pérez-Arriaga, Ignacio J., 2013. "A sustainable framework for biofuels in Europe," Energy Policy, Elsevier, vol. 52(C), pages 166-169.
    12. Shad Dowlatshahi, 2000. "Developing a Theory of Reverse Logistics," Interfaces, INFORMS, vol. 30(3), pages 143-155, June.
    13. Purushothaman, K. & Nagarajan, G., 2009. "Performance, emission and combustion characteristics of a compression ignition engine operating on neat orange oil," Renewable Energy, Elsevier, vol. 34(1), pages 242-245.
    14. Prussi, Matteo & Chiaramonti, David & Recchia, Lucia & Martelli, Francesco & Guidotti, Fabio & Pari, Luigi, 2013. "Alternative feedstock for the biodiesel and energy production: The OVEST project," Energy, Elsevier, vol. 58(C), pages 2-8.
    15. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
    16. Mandolesi de Araújo, Carlos Daniel & de Andrade, Claudia Cristina & de Souza e Silva, Erika & Dupas, Francisco Antonio, 2013. "Biodiesel production from used cooking oil: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 445-452.
    17. Govindan, Kannan & Palaniappan, Murugesan & Zhu, Qinghua & Kannan, Devika, 2012. "Analysis of third party reverse logistics provider using interpretive structural modeling," International Journal of Production Economics, Elsevier, vol. 140(1), pages 204-211.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chuanmin Mi & Yetian Chen & Chiung-Shu Cheng & Joselyne Lucky Uwanyirigira & Ching-Torng Lin, 2019. "Exploring the Determinants of Hot Spring Tourism Customer Satisfaction: Causal Relationships Analysis Using ISM," Sustainability, MDPI, vol. 11(9), pages 1-20, May.
    2. Savvas L. Douvartzides & Nikolaos D. Charisiou & Kyriakos N. Papageridis & Maria A. Goula, 2019. "Green Diesel: Biomass Feedstocks, Production Technologies, Catalytic Research, Fuel Properties and Performance in Compression Ignition Internal Combustion Engines," Energies, MDPI, vol. 12(5), pages 1-41, February.
    3. Narwane, Vaibhav S. & Yadav, Vinay Surendra & Raut, Rakesh D. & Narkhede, Balkrishna E. & Gardas, Bhaskar B., 2021. "Sustainable development challenges of the biofuel industry in India based on integrated MCDM approach," Renewable Energy, Elsevier, vol. 164(C), pages 298-309.
    4. Varsha K. Singh & Sapana Jha & Palak Rana & Renu Soni & Rowland Lalnunpuii & Prashant K. Singh & Rajeshwar P. Sinha & Garvita Singh, 2024. "Cyanobacteria as a Biocatalyst for Sustainable Production of Biofuels and Chemicals," Energies, MDPI, vol. 17(2), pages 1-25, January.
    5. Abdul Aziz Khan Niazi & Tehmina Fiaz Qazi & Abdul Basit, 2019. "Expounding the Structure of Slyer Ways of Tunneling in Pakistan," Global Regional Review, Humanity Only, vol. 4(2), pages 329-343, June.
    6. Masoud, Shaimaa M. & Attia, Ali M.A. & Salem, Hindawi & El-Zoheiry, Radwan M., 2023. "Investigation of jet A-1 and waste cooking oil biodiesel fuel blend flame characteristics stabilized by radial swirler in lean pre-vaporized premixed combustor," Energy, Elsevier, vol. 263(PC).
    7. Avinash, A. & Sasikumar, P. & Pugazhendhi, Arivalagan, 2020. "Analysis of the limiting factors for large scale microalgal cultivation: A promising future for renewable and sustainable biofuel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    8. Tirkey, Jeewan Vachan & Kumar, Ajeet & Singh, Deepak Kumar, 2022. "Energy consumption, greenhouse gas emissions and economic feasibility studies of biodiesel production from Mahua (Madhuca longifolia) in India," Energy, Elsevier, vol. 249(C).
    9. Abdul Aziz Khan Niazi & Tehmina Fiaz Qazi & Maryam Aziz & Abdul Basit & Ifra Aziz Khan Niazi, 2023. "Using the Binary Matrices for Modeling the Supply Chain Issues of Virtual Shops: An Evidence from Pakistan," Journal of Policy Research (JPR), Research Foundation for Humanity (RFH), vol. 9(2), pages 548-564.
    10. Niu, Shengli & Yu, Hewei & Zhao, Shuang & Zhang, Xiangyu & Li, Ximing & Han, Kuihua & Lu, Chunmei & Wang, Yongzheng, 2019. "Apparent kinetic and thermodynamic calculation for thermal degradation of stearic acid and its esterification derivants through thermogravimetric analysis," Renewable Energy, Elsevier, vol. 133(C), pages 373-381.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    2. Subramaniam, D. & Murugesan, A. & Avinash, A. & Kumaravel, A., 2013. "Bio-diesel production and its engine characteristics—An expatiate view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 361-370.
    3. Hosseinzadeh-Bandbafha, Homa & Nizami, Abdul-Sattar & Kalogirou, Soteris A. & Gupta, Vijai Kumar & Park, Young-Kwon & Fallahi, Alireza & Sulaiman, Alawi & Ranjbari, Meisam & Rahnama, Hassan & Aghbashl, 2022. "Environmental life cycle assessment of biodiesel production from waste cooking oil: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    4. Zhang, Huiming & Xu, Zhidong & Zhou, Dequn & Cao, Jie, 2017. "Waste cooking oil-to-energy under incomplete information: Identifying policy options through an evolutionary game," Applied Energy, Elsevier, vol. 185(P1), pages 547-555.
    5. Pourzolfaghar, Hamed & Abnisa, Faisal & Daud, Wan Mohd Ashri Wan & Aroua, Mohamed Kheireddine, 2016. "A review of the enzymatic hydroesterification process for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 245-257.
    6. Avinash, A. & Subramaniam, D. & Murugesan, A., 2014. "Bio-diesel—A global scenario," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 517-527.
    7. Kumar, Niraj & Varun, & Chauhan, Sant Ram, 2013. "Performance and emission characteristics of biodiesel from different origins: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 633-658.
    8. Mukisa, Nicholas & Zamora, Ramon & Lie, Tek Tjing, 2020. "Assessment of community sustainable livelihoods capitals for the implementation of alternative energy technologies in Uganda – Africa," Renewable Energy, Elsevier, vol. 160(C), pages 886-902.
    9. Haji Vahabzadeh, Ali & Asiaei, Arash & Zailani, Suhaiza, 2015. "Reprint of “Green decision-making model in reverse logistics using FUZZY-VIKOR method”," Resources, Conservation & Recycling, Elsevier, vol. 104(PB), pages 334-347.
    10. Zhang, Huiming & Zheng, Yu & Cao, Jie & Qiu, Yueming, 2017. "Has government intervention effectively encouraged the use of waste cooking oil as an energy source? Comparison of two Chinese biofuel companies," Energy, Elsevier, vol. 140(P1), pages 708-715.
    11. Haji Vahabzadeh, Ali & Asiaei, Arash & Zailani, Suhaiza, 2015. "Green decision-making model in reverse logistics using FUZZY-VIKOR method," Resources, Conservation & Recycling, Elsevier, vol. 103(C), pages 125-138.
    12. Naim Ahmad & Ayman Qahmash, 2021. "SmartISM: Implementation and Assessment of Interpretive Structural Modeling," Sustainability, MDPI, vol. 13(16), pages 1-27, August.
    13. Wen-Tien Tsai, 2019. "Mandatory Recycling of Waste Cooking Oil from Residential and Commercial Sectors in Taiwan," Resources, MDPI, vol. 8(1), pages 1-11, February.
    14. Amin Vafadarnikjoo & Hadi Badri Ahmadi & Benjamin Thomas Hazen & James J. H. Liou, 2020. "Understanding Interdependencies among Social Sustainability Evaluation Criteria in an Emerging Economy," Sustainability, MDPI, vol. 12(5), pages 1-21, March.
    15. Aboelazayem, Omar & Gadalla, Mamdouh & Saha, Basudeb, 2018. "Valorisation of high acid value waste cooking oil into biodiesel using supercritical methanolysis: Experimental assessment and statistical optimisation on typical Egyptian feedstock," Energy, Elsevier, vol. 162(C), pages 408-420.
    16. Satyanarayana, M. & Muraleedharan, C., 2011. "A comparative study of vegetable oil methyl esters (biodiesels)," Energy, Elsevier, vol. 36(4), pages 2129-2137.
    17. Zimmerman, William B. & Kokoo, Rungrote, 2018. "Esterification for biodiesel production with a phantom catalyst: Bubble mediated reactive distillation," Applied Energy, Elsevier, vol. 221(C), pages 28-40.
    18. Capuano, D. & Costa, M. & Di Fraia, S. & Massarotti, N. & Vanoli, L., 2017. "Direct use of waste vegetable oil in internal combustion engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 759-770.
    19. Mei Cai & Guo Wei, 2020. "A fuzzy social vulnerability evaluation from the perception of disaster bearers against meteorological disasters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 2355-2370, September.
    20. Awad, Sary & Loubar, Khaled & Tazerout, Mohand, 2014. "Experimental investigation on the combustion, performance and pollutant emissions of biodiesel from animal fat residues on a direct injection diesel engine," Energy, Elsevier, vol. 69(C), pages 826-836.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:127:y:2018:i:c:p:678-684. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.