IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i2p408-d1318852.html
   My bibliography  Save this article

Cyanobacteria as a Biocatalyst for Sustainable Production of Biofuels and Chemicals

Author

Listed:
  • Varsha K. Singh

    (Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India)

  • Sapana Jha

    (Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India)

  • Palak Rana

    (Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India)

  • Renu Soni

    (Department of Botany, Gargi College, University of Delhi, Delhi 110049, India)

  • Rowland Lalnunpuii

    (Department of Biotechnology, Mizoram University, Aizawl 796001, India)

  • Prashant K. Singh

    (Department of Biotechnology, Mizoram University, Aizawl 796001, India)

  • Rajeshwar P. Sinha

    (Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India)

  • Garvita Singh

    (Department of Botany, Gargi College, University of Delhi, Delhi 110049, India)

Abstract

The combustion of fossil fuels constitutes a significant catalyst for climate change, resulting in the annual release of about two billion tonnes of carbon dioxide (CO 2 ). The increase in CO 2 emission is directly linked to a heightened occurrence of natural calamities and health-related issues. The substitution of fossil fuels with renewable energy sources is a fundamental approach to reduce the negative impacts caused by consumption of these nonrenewable energy resources. The utilisation of biological methodologies to produce environmentally friendly energy from renewable sources holds significant potential for the sustainable production of fuel. However, the cultivation of first- and second-generation biofuel crops presents a challenge, since they compete for limited cropland, hence constraining their overall viability. In contrast, photosynthetic microorganisms such as algae and cyanobacteria exhibit significant potential as third-generation biofuel catalysts, devoid of the limitations associated with contemporary biofuels. Cyanobacteria, a type of photosynthetic prokaryotes, exhibit significant potential for the direct conversion of carbon dioxide (CO 2 ) into biofuels, chemicals, and various other valuable compounds. There has been a growing interest in the concept of utilising biological processes to convert carbon dioxide into fuels and chemicals. The introduction of a limited number of heterologous genes has the potential to confer upon cyanobacteria the capability to convert particular central metabolites into a diverse range of end products. The progress in the field of synthetic biology and genetic manipulation has enabled the manipulation of cyanobacteria to synthesise compounds that are not generally produced by these organisms in their natural environment. This study focuses on recent papers that employ various methodologies to engineer cyanobacteria for the purpose of producing high-value compounds, such as biofuels.

Suggested Citation

  • Varsha K. Singh & Sapana Jha & Palak Rana & Renu Soni & Rowland Lalnunpuii & Prashant K. Singh & Rajeshwar P. Sinha & Garvita Singh, 2024. "Cyanobacteria as a Biocatalyst for Sustainable Production of Biofuels and Chemicals," Energies, MDPI, vol. 17(2), pages 1-25, January.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:2:p:408-:d:1318852
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/2/408/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/2/408/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Avinash, A. & Sasikumar, P. & Murugesan, A., 2018. "Understanding the interaction among the barriers of biodiesel production from waste cooking oil in India- an interpretive structural modeling approach," Renewable Energy, Elsevier, vol. 127(C), pages 678-684.
    2. Velmurugan, Rajendran & Incharoensakdi, Aran, 2020. "Co-cultivation of two engineered strains of Synechocystis sp. PCC 6803 results in improved bioethanol production," Renewable Energy, Elsevier, vol. 146(C), pages 1124-1133.
    3. Chuck, Christopher J. & Donnelly, Joseph, 2014. "The compatibility of potential bioderived fuels with Jet A-1 aviation kerosene," Applied Energy, Elsevier, vol. 118(C), pages 83-91.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Atsonios, Konstantinos & Kougioumtzis, Michael-Alexander & D. Panopoulos, Kyriakos & Kakaras, Emmanuel, 2015. "Alternative thermochemical routes for aviation biofuels via alcohols synthesis: Process modeling, techno-economic assessment and comparison," Applied Energy, Elsevier, vol. 138(C), pages 346-366.
    2. Buffi, Marco & Valera-Medina, Agustin & Marsh, Richard & Pugh, Daniel & Giles, Anthony & Runyon, Jon & Chiaramonti, David, 2017. "Emissions characterization tests for hydrotreated renewable jet fuel from used cooking oil and its blends," Applied Energy, Elsevier, vol. 201(C), pages 84-93.
    3. Thowayeb H. Hassan & Abu Elnasr E. Sobaih & Amany E. Salem, 2021. "Factors Affecting the Rate of Fuel Consumption in Aircrafts," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    4. Chuanmin Mi & Yetian Chen & Chiung-Shu Cheng & Joselyne Lucky Uwanyirigira & Ching-Torng Lin, 2019. "Exploring the Determinants of Hot Spring Tourism Customer Satisfaction: Causal Relationships Analysis Using ISM," Sustainability, MDPI, vol. 11(9), pages 1-20, May.
    5. Savvas L. Douvartzides & Nikolaos D. Charisiou & Kyriakos N. Papageridis & Maria A. Goula, 2019. "Green Diesel: Biomass Feedstocks, Production Technologies, Catalytic Research, Fuel Properties and Performance in Compression Ignition Internal Combustion Engines," Energies, MDPI, vol. 12(5), pages 1-41, February.
    6. Donoso, David & Bolonio, David & Ballesteros, Rosario & Lapuerta, Magín & Canoira, Laureano, 2022. "Hydrogenated orange oil: A waste derived drop-in biojet fuel," Renewable Energy, Elsevier, vol. 188(C), pages 1049-1058.
    7. Chen, Longfei & Zhang, Zhichao & Lu, Yiji & Zhang, Chi & Zhang, Xin & Zhang, Cuiqi & Roskilly, Anthony Paul, 2017. "Experimental study of the gaseous and particulate matter emissions from a gas turbine combustor burning butyl butyrate and ethanol blends," Applied Energy, Elsevier, vol. 195(C), pages 693-701.
    8. Praepilas Dujjanutat & Arthit Neramittagapong & Pakawadee Kaewkannetra, 2019. "Optimization of Bio-Hydrogenated Kerosene from Refined Palm Oil by Catalytic Hydrocracking," Energies, MDPI, vol. 12(16), pages 1-15, August.
    9. Carlo Pastore & Valeria D’Ambrosio, 2021. "Intensification of Processes for the Production of Ethyl Levulinate Using AlCl 3 ·6H 2 O," Energies, MDPI, vol. 14(5), pages 1-11, February.
    10. Escalante, Edwin Santiago Rios & Ramos, Luth Silva & Rodriguez Coronado, Christian J. & de Carvalho Júnior, João Andrade, 2022. "Evaluation of the potential feedstock for biojet fuel production: Focus in the Brazilian context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    11. Ahmad, Salman & Ouenniche, Jamal & Kolosz, Ben W. & Greening, Philip & Andresen, John M. & Maroto-Valer, M. Mercedes & Xu, Bing, 2021. "A stakeholders’ participatory approach to multi-criteria assessment of sustainable aviation fuels production pathways," International Journal of Production Economics, Elsevier, vol. 238(C).
    12. Gegg, Per & Budd, Lucy & Ison, Stephen, 2014. "The market development of aviation biofuel: Drivers and constraints," Journal of Air Transport Management, Elsevier, vol. 39(C), pages 34-40.
    13. Zhang, Xuesong & Lei, Hanwu & Zhu, Lei & Qian, Moriko & Zhu, Xiaolu & Wu, Joan & Chen, Shulin, 2016. "Enhancement of jet fuel range alkanes from co-feeding of lignocellulosic biomass with plastics via tandem catalytic conversions," Applied Energy, Elsevier, vol. 173(C), pages 418-430.
    14. Tirkey, Jeewan Vachan & Kumar, Ajeet & Singh, Deepak Kumar, 2022. "Energy consumption, greenhouse gas emissions and economic feasibility studies of biodiesel production from Mahua (Madhuca longifolia) in India," Energy, Elsevier, vol. 249(C).
    15. Cheng, Feng & Brewer, Catherine E., 2017. "Producing jet fuel from biomass lignin: Potential pathways to alkyl-benzenes and cycloalkanes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 673-722.
    16. Masoud, Shaimaa M. & Attia, Ali M.A. & Salem, Hindawi & El-Zoheiry, Radwan M., 2023. "Investigation of jet A-1 and waste cooking oil biodiesel fuel blend flame characteristics stabilized by radial swirler in lean pre-vaporized premixed combustor," Energy, Elsevier, vol. 263(PC).
    17. Niu, Shengli & Yu, Hewei & Zhao, Shuang & Zhang, Xiangyu & Li, Ximing & Han, Kuihua & Lu, Chunmei & Wang, Yongzheng, 2019. "Apparent kinetic and thermodynamic calculation for thermal degradation of stearic acid and its esterification derivants through thermogravimetric analysis," Renewable Energy, Elsevier, vol. 133(C), pages 373-381.
    18. Yilmaz, Nadir & Atmanli, Alpaslan, 2017. "Sustainable alternative fuels in aviation," Energy, Elsevier, vol. 140(P2), pages 1378-1386.
    19. Abdul Aziz Khan Niazi & Tehmina Fiaz Qazi & Abdul Basit, 2019. "Expounding the Structure of Slyer Ways of Tunneling in Pakistan," Global Regional Review, Humanity Only, vol. 4(2), pages 329-343, June.
    20. Gvidonas Labeckas & Stasys Slavinskas & Irena Kanapkienė, 2019. "Study of the Effects of Biofuel-Oxygen of Various Origins on a CRDI Diesel Engine Combustion and Emissions," Energies, MDPI, vol. 12(7), pages 1-49, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:2:p:408-:d:1318852. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.