IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v263y2023ipcs0360544222027165.html
   My bibliography  Save this article

Investigation of jet A-1 and waste cooking oil biodiesel fuel blend flame characteristics stabilized by radial swirler in lean pre-vaporized premixed combustor

Author

Listed:
  • Masoud, Shaimaa M.
  • Attia, Ali M.A.
  • Salem, Hindawi
  • El-Zoheiry, Radwan M.

Abstract

Energy crisis and the new environmental legislations have motivated researchers worldwide to come up with new solutions to these emerging problems. One of the proposed solutions is to biodiesel from vegetable and waste oils to substitute the conventional fuels. The current study aims to investigate the flame characteristics of waste cooking oil biodiesel fuel blend stabilized by radial swirler in Lean Pre-vaporized Premixed (LPP) combustor. In this scope following tasks were performed (i) preparing Waste Cooking Oil Methyl (WCOME) via an ultrasonic assisted transesterification process, (ii) designing and constructing radial swirler (with swirl number SN = 0.55), and (iii) investigating the flame structures of base Jet A-1 fuel and a blend of WCOME and Jet A-1 containing 10% of WCOME (symbolized as B10). Experiments were performed at equivalence ratio Φ = 0.75 and air preheat temperature of 310 °C. Measurements revealed more temperature distribution with lower maximum value for B10 than those for base fuel. CO was higher for B10 at exit level in the range of 14,000 ppm. On the other hand, it was on average of 230 ppm for Jet A-1. NOx emissions recorded was slightly lower for B10 than Jet A-1, but both were about 10 ppm. It could be concluded that, B10 can replace Jet A-1 to reduce NOx emissions with uniform temperature distribution. Use of LPP combustion reduces gas turbine emissions and use of radial swirler to stabilize the lean premixed mixture is confirmed.

Suggested Citation

  • Masoud, Shaimaa M. & Attia, Ali M.A. & Salem, Hindawi & El-Zoheiry, Radwan M., 2023. "Investigation of jet A-1 and waste cooking oil biodiesel fuel blend flame characteristics stabilized by radial swirler in lean pre-vaporized premixed combustor," Energy, Elsevier, vol. 263(PC).
  • Handle: RePEc:eee:energy:v:263:y:2023:i:pc:s0360544222027165
    DOI: 10.1016/j.energy.2022.125830
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222027165
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125830?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. Ozkan & J. F. Puna & J. F. Gomes & T. Cabrita & J. V. Palmeira & M. T. Santos, 2019. "Preliminary Study on the Use of Biodiesel Obtained from Waste Vegetable Oils for Blending with Hydrotreated Kerosene Fossil Fuel Using Calcium Oxide (CaO) from Natural Waste Materials as Heterogeneous," Energies, MDPI, vol. 12(22), pages 1-19, November.
    2. Senthur Prabu, S. & Asokan, M.A. & Roy, Rahul & Francis, Steff & Sreelekh, M.K., 2017. "Performance, combustion and emission characteristics of diesel engine fuelled with waste cooking oil bio-diesel/diesel blends with additives," Energy, Elsevier, vol. 122(C), pages 638-648.
    3. Gad, M.S. & Panchal, Hitesh & Ağbulut, Ümit, 2022. "Waste to Energy: An experimental comparison of burning the waste-derived bio-oils produced by transesterification and pyrolysis methods," Energy, Elsevier, vol. 242(C).
    4. Palash, S.M. & Kalam, M.A. & Masjuki, H.H. & Masum, B.M. & Rizwanul Fattah, I.M. & Mofijur, M., 2013. "Impacts of biodiesel combustion on NOx emissions and their reduction approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 473-490.
    5. Muhammad Syahiran Abdul Malik & Ashrul Ishak Mohamad Shaiful & Mohd Shuisma Mohd. Ismail & Mohammad Nazri Mohd Jaafar & Amirah Mohamad Sahar, 2017. "Combustion and Emission Characteristics of Coconut-Based Biodiesel in a Liquid Fuel Burner," Energies, MDPI, vol. 10(4), pages 1-12, April.
    6. Avinash, A. & Sasikumar, P. & Murugesan, A., 2018. "Understanding the interaction among the barriers of biodiesel production from waste cooking oil in India- an interpretive structural modeling approach," Renewable Energy, Elsevier, vol. 127(C), pages 678-684.
    7. Belal, Belal Y. & Li, Gesheng & Zhang, Zunhua & El-Batsh, H.M. & Moneib, Hany A. & Attia, Ali M.A., 2021. "The effect of swirl burner design configuration on combustion and emission characteristics of lean pre-vaporized premixed flames," Energy, Elsevier, vol. 228(C).
    8. El-Zoheiry, Radwan M. & EL-Seesy, Ahmed I. & Attia, Ali M.A. & He, Zhixia & El-Batsh, Hesham M., 2020. "Combustion and emission characteristics of Jojoba biodiesel-jet A1 mixtures applying a lean premixed pre-vaporized combustion techniques: An experimental investigation," Renewable Energy, Elsevier, vol. 162(C), pages 2227-2245.
    9. Chong, Cheng Tung & Chiong, Meng-Choung & Ng, Jo-Han & Lim, Mooktzeng & Tran, Manh-Vu & Valera-Medina, Agustin & Chong, William Woei Fong, 2019. "Oxygenated sunflower biodiesel: Spectroscopic and emissions quantification under reacting swirl spray conditions," Energy, Elsevier, vol. 178(C), pages 804-813.
    10. Grigore Cican & Marius Deaconu & Radu Mirea & Laurentiu Constantin Ceatra & Mihaiella Cretu, 2021. "An Experimental Investigation to Use the Biodiesel Resulting from Recycled Sunflower Oil, and Sunflower Oil with Palm Oil as Fuels for Aviation Turbo-Engines," IJERPH, MDPI, vol. 18(10), pages 1-18, May.
    11. Mohamad Shaiful Ashrul Ishak & Mohammad Nazri Mohd Jaafar & Yehia A. Eldrainy, 2009. "The Effect of Radial Swirl Generator on Reducing Emissions from Bio-Fuel Burner System," Modern Applied Science, Canadian Center of Science and Education, vol. 3(6), pages 1-45, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chiong, Meng-Choung & Kang, Hooi-Siang & Shaharuddin, Nik Mohd Ridzuan & Mat, Shabudin & Quen, Lee Kee & Ten, Ki-Hong & Ong, Muk Chen, 2021. "Challenges and opportunities of marine propulsion with alternative fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    2. Ağbulut, Ümit & Yeşilyurt, Murat Kadir & Sarıdemir, Suat, 2021. "Wastes to energy: Improving the poor properties of waste tire pyrolysis oil with waste cooking oil methyl ester and waste fusel alcohol – A detailed assessment on the combustion, emission, and perform," Energy, Elsevier, vol. 222(C).
    3. Belal, Belal Y. & Li, Gesheng & Zhang, Zunhua & El-Batsh, H.M. & Moneib, Hany A. & Attia, Ali M.A., 2021. "The effect of swirl burner design configuration on combustion and emission characteristics of lean pre-vaporized premixed flames," Energy, Elsevier, vol. 228(C).
    4. Ho, Sze-Hwee & Wong, Yiik-Diew & Chang, Victor Wei-Chung, 2014. "Evaluating the potential of biodiesel (via recycled cooking oil) use in Singapore, an urban city," Resources, Conservation & Recycling, Elsevier, vol. 91(C), pages 117-124.
    5. Perumal, Varatharaju & Ilangkumaran, M., 2018. "Water emulsified hybrid pongamia biodiesel as a modified fuel for the experimental analysis of performance, combustion and emission characteristics of a direct injection diesel engine," Renewable Energy, Elsevier, vol. 121(C), pages 623-631.
    6. Yesilyurt, Murat Kadir & Eryilmaz, Tanzer & Arslan, Mevlüt, 2018. "A comparative analysis of the engine performance, exhaust emissions and combustion behaviors of a compression ignition engine fuelled with biodiesel/diesel/1-butanol (C4 alcohol) and biodiesel/diesel/," Energy, Elsevier, vol. 165(PB), pages 1332-1351.
    7. Singh, Paramvir & Varun, & Chauhan, S.R., 2016. "Carbonyl and aromatic hydrocarbon emissions from diesel engine exhaust using different feedstock: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 269-291.
    8. Asokan, M.A. & Senthur Prabu, S. & Bade, Pushpa Kiran Kumar & Nekkanti, Venkata Mukesh & Gutta, Sri Sai Gopal, 2019. "Performance, combustion and emission characteristics of juliflora biodiesel fuelled DI diesel engine," Energy, Elsevier, vol. 173(C), pages 883-892.
    9. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    10. Monirul, I.M. & Kalam, M.A. & Masjuki, H.H. & Zulkifli, N.W.M. & Shahir, S.A. & Mosarof, M.H. & Ruhul, A.M., 2017. "Influence of poly(methyl acrylate) additive on cold flow properties of coconut biodiesel blends and exhaust gas emissions," Renewable Energy, Elsevier, vol. 101(C), pages 702-712.
    11. Suiuay, Chokchai & Laloon, Kittipong & Katekaew, Somporn & Senawong, Kritsadang & Noisuwan, Phakamat & Sudajan, Somposh, 2020. "Effect of gasoline-like fuel obtained from hard-resin of Yang (Dipterocarpus alatus) on single cylinder gasoline engine performance and exhaust emissions," Renewable Energy, Elsevier, vol. 153(C), pages 634-645.
    12. El-Shafay, A.S. & Ağbulut, Ümit & Attia, El-Awady & Touileb, Kamel Lounes & Gad, M.S., 2023. "Waste to energy: Production of poultry-based fat biodiesel and experimental assessment of its usability on engine behaviors," Energy, Elsevier, vol. 262(PB).
    13. Can, Özer & Baklacioglu, Tolga & Özturk, Erkan & Turan, Onder, 2022. "Artificial neural networks modeling of combustion parameters for a diesel engine fueled with biodiesel fuel," Energy, Elsevier, vol. 247(C).
    14. Abdolsaeid Ganjehkaviri & Mohammad Nazri Mohd Jaafar & Seyed Ehsan Hosseini & Anas Basri Musthafa, 2016. "Performance Evaluation of Palm Oil-Based Biodiesel Combustion in an Oil Burner," Energies, MDPI, vol. 9(2), pages 1-10, February.
    15. Imran, A. & Varman, M. & Masjuki, H.H. & Kalam, M.A., 2013. "Review on alcohol fumigation on diesel engine: A viable alternative dual fuel technology for satisfactory engine performance and reduction of environment concerning emission," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 739-751.
    16. Avinash, A. & Sasikumar, P. & Pugazhendhi, Arivalagan, 2020. "Analysis of the limiting factors for large scale microalgal cultivation: A promising future for renewable and sustainable biofuel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    17. Zhang, Huiming & Zheng, Yu & Cao, Jie & Qiu, Yueming, 2017. "Has government intervention effectively encouraged the use of waste cooking oil as an energy source? Comparison of two Chinese biofuel companies," Energy, Elsevier, vol. 140(P1), pages 708-715.
    18. Chuanmin Mi & Yetian Chen & Chiung-Shu Cheng & Joselyne Lucky Uwanyirigira & Ching-Torng Lin, 2019. "Exploring the Determinants of Hot Spring Tourism Customer Satisfaction: Causal Relationships Analysis Using ISM," Sustainability, MDPI, vol. 11(9), pages 1-20, May.
    19. Venu, Harish & Veza, Ibham & Selvam, Lokesh & Appavu, Prabhu & Raju, V. Dhana & Subramani, Lingesan & Nair, Jayashri N., 2022. "Analysis of particle size diameter (PSD), mass fraction burnt (MFB) and particulate number (PN) emissions in a diesel engine powered by diesel/biodiesel/n-amyl alcohol blends," Energy, Elsevier, vol. 250(C).
    20. Resitoglu, Ibrahim Aslan, 2021. "The effect of biodiesel on activity of diesel oxidation catalyst and selective catalytic reduction catalysts in diesel engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:263:y:2023:i:pc:s0360544222027165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.