IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v162y2020icp2227-2245.html
   My bibliography  Save this article

Combustion and emission characteristics of Jojoba biodiesel-jet A1 mixtures applying a lean premixed pre-vaporized combustion techniques: An experimental investigation

Author

Listed:
  • El-Zoheiry, Radwan M.
  • EL-Seesy, Ahmed I.
  • Attia, Ali M.A.
  • He, Zhixia
  • El-Batsh, Hesham M.

Abstract

The raw Jojoba oil is utilized to produce biodiesel via a transesterification process, which is optimized using smoke point, yield, and viscosity of produced biodiesel, as well as the final product, is characterized utilizing GC-MS and FTIR. Then, the combustion and emission characteristics of Jojoba oil biodiesel-Jet-A1 blends are performed utilizing a lean premixed pre-vaporized combustion (LPP) approach. The JME with two blending ratios of 10% and 20% by volume and jet fuel of 90% and 80% by volume, as well as the pure jet fuel, are burned in an LPP combustor at two different equivalence ratios of 0.87 and 0.95 to investigate the suitability of using the JME-jet A1 fuel blends as an alternative energy resource. The LPP combustor is designed precisely regarding a comprehensive survey of the main parameters affecting on it, and its combustion results show that it has an acceptable and stable flame. The results indicate that the NOx emission decreases with enlarging the volume fraction of JME, while the CO and UHC formation increase. The flame temperature distributions are similar for the different tested fuels. It can be deduced that Jojoba biodiesel can be used up to 20% by volume as an alternative fuel with jet fuel in a commercial application.

Suggested Citation

  • El-Zoheiry, Radwan M. & EL-Seesy, Ahmed I. & Attia, Ali M.A. & He, Zhixia & El-Batsh, Hesham M., 2020. "Combustion and emission characteristics of Jojoba biodiesel-jet A1 mixtures applying a lean premixed pre-vaporized combustion techniques: An experimental investigation," Renewable Energy, Elsevier, vol. 162(C), pages 2227-2245.
  • Handle: RePEc:eee:renene:v:162:y:2020:i:c:p:2227-2245
    DOI: 10.1016/j.renene.2020.10.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120315974
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.10.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Seljak, T. & Buffi, M. & Valera-Medina, A. & Chong, C.T. & Chiaramonti, D. & Katrašnik, T., 2020. "Bioliquids and their use in power generation – A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    2. Yang, Liuqing & Takase, Mohammed & Zhang, Min & Zhao, Ting & Wu, Xiangyang, 2014. "Potential non-edible oil feedstock for biodiesel production in Africa: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 461-477.
    3. Buffi, Marco & Valera-Medina, Agustin & Marsh, Richard & Pugh, Daniel & Giles, Anthony & Runyon, Jon & Chiaramonti, David, 2017. "Emissions characterization tests for hydrotreated renewable jet fuel from used cooking oil and its blends," Applied Energy, Elsevier, vol. 201(C), pages 84-93.
    4. Hashimoto, Nozomu & Nishida, Hiroyuki & Kimoto, Masayoshi & Tainaka, Kazuki & Ikeda, Atsushi & Umemoto, Satoshi, 2018. "Effects of Jatropha oil blending with C-heavy oil on soot emissions and heat absorption balance characteristics for boiler combustion," Renewable Energy, Elsevier, vol. 126(C), pages 924-932.
    5. Zhang, Chi & Hui, Xin & Lin, Yuzhen & Sung, Chih-Jen, 2016. "Recent development in studies of alternative jet fuel combustion: Progress, challenges, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 120-138.
    6. Sundararaj, Ramraj H. & Kumar, Roshan Dinesh & Raut, Anoop Kumar & Sekar, T. Chandra & Pandey, Vivek & Kushari, Abhijit & Puri, S.K., 2019. "Combustion and emission characteristics from biojet fuel blends in a gas turbine combustor," Energy, Elsevier, vol. 182(C), pages 689-705.
    7. Agarwal, Swati & Kumari, Sonu & Mudgal, Anurag & Khan, Suphiya, 2020. "Green synthesized nanoadditives in jojoba biodiesel-diesel blends: An improvement of engine performance and emission," Renewable Energy, Elsevier, vol. 147(P1), pages 1836-1844.
    8. E, Jiaqiang & Pham, Minhhieu & Zhao, D. & Deng, Yuanwang & Le, DucHieu & Zuo, Wei & Zhu, Hao & Liu, Teng & Peng, Qingguo & Zhang, Zhiqing, 2017. "Effect of different technologies on combustion and emissions of the diesel engine fueled with biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 620-647.
    9. Chong, Cheng Tung & Hochgreb, Simone, 2017. "Flame structure, spectroscopy and emissions quantification of rapeseed biodiesel under model gas turbine conditions," Applied Energy, Elsevier, vol. 185(P2), pages 1383-1392.
    10. Buffi, Marco & Seljak, Tine & Cappelletti, Alessandro & Bettucci, Lorenzo & Valera-Medina, Agustin & Katrašnik, Tomaž & Chiaramonti, David, 2018. "Performance and emissions of liquefied wood as fuel for a small scale gas turbine," Applied Energy, Elsevier, vol. 230(C), pages 1193-1204.
    11. Enagi, Ibrahim I. & Al-attab, K.A. & Zainal, Z.A., 2018. "Liquid biofuels utilization for gas turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 43-55.
    12. Seljak, T. & Katrašnik, T., 2019. "Emission reduction through highly oxygenated viscous biofuels: Use of glycerol in a micro gas turbine," Energy, Elsevier, vol. 169(C), pages 1000-1011.
    13. Chong, Cheng Tung & Chiong, Meng-Choung & Ng, Jo-Han & Lim, Mooktzeng & Tran, Manh-Vu & Valera-Medina, Agustin & Chong, William Woei Fong, 2019. "Oxygenated sunflower biodiesel: Spectroscopic and emissions quantification under reacting swirl spray conditions," Energy, Elsevier, vol. 178(C), pages 804-813.
    14. Rochelle, David & Najafi, Hamidreza, 2019. "A review of the effect of biodiesel on gas turbine emissions and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 129-137.
    15. Mwangi, John Kennedy & Lee, Wen-Jhy & Chang, Yu-Cheng & Chen, Chia-Yang & Wang, Lin-Chi, 2015. "An overview: Energy saving and pollution reduction by using green fuel blends in diesel engines," Applied Energy, Elsevier, vol. 159(C), pages 214-236.
    16. Mendez, C.J. & Parthasarathy, R.N. & Gollahalli, S.R., 2014. "Performance and emission characteristics of butanol/Jet A blends in a gas turbine engine," Applied Energy, Elsevier, vol. 118(C), pages 135-140.
    17. De Giorgi, Maria Grazia & Fontanarosa, Donato & Ficarella, Antonio & Pescini, Elisa, 2020. "Effects on performance, combustion and pollutants of water emulsified fuel in an aeroengine combustor," Applied Energy, Elsevier, vol. 260(C).
    18. Habib, Zehra & Parthasarathy, Ramkumar & Gollahalli, Subramanyam, 2010. "Performance and emission characteristics of biofuel in a small-scale gas turbine engine," Applied Energy, Elsevier, vol. 87(5), pages 1701-1709, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Belal, Belal Y. & Li, Gesheng & Zhang, Zunhua & El-Batsh, H.M. & Moneib, Hany A. & Attia, Ali M.A., 2021. "The effect of swirl burner design configuration on combustion and emission characteristics of lean pre-vaporized premixed flames," Energy, Elsevier, vol. 228(C).
    2. Sandouqa, Arwa & Al-Hamamre, Zayed, 2021. "Economical evaluation of jojoba cultivation for biodiesel production in Jordan," Renewable Energy, Elsevier, vol. 177(C), pages 1116-1132.
    3. N, Santhosh & Afzal, Asif & V, Srikanth H. & Ağbulut, Ümit & Alahmadi, Ahmad Aziz & Gowda, Ashwin C. & Alwetaishi, Mamdooh & Shaik, Saboor & Hoang, Anh Tuan, 2023. "Poultry fat biodiesel as a fuel substitute in diesel-ethanol blends for DI-CI engine: Experimental, modeling and optimization," Energy, Elsevier, vol. 270(C).
    4. Kalil Rahiman, M. & Santhoshkumar, S. & Subramaniam, D. & Avinash, A. & Pugazhendhi, Arivalagan, 2022. "Effects of oxygenated fuel pertaining to fuel analysis on diesel engine combustion and emission characteristics," Energy, Elsevier, vol. 239(PD).
    5. Lee, Cho-Yu & Lin, Jhe-Kai & Wang, Wei-Cheng & Chen, Rong-Hong & Lin, Kun-Mo & Saputro, Herman & Cong, Huynh Thanh & Hong, Thong Duc & Tongroon, Manida, 2023. "The production of the hydro-processed renewable diesel (HRD) and its performances from a turbo-charged diesel engine," Energy, Elsevier, vol. 270(C).
    6. Masoud, Shaimaa M. & Attia, Ali M.A. & Salem, Hindawi & El-Zoheiry, Radwan M., 2023. "Investigation of jet A-1 and waste cooking oil biodiesel fuel blend flame characteristics stabilized by radial swirler in lean pre-vaporized premixed combustor," Energy, Elsevier, vol. 263(PC).
    7. Safieddin Ardebili, Seyed Mohammad & Babagiray, Mustafa & Aytav, Emre & Can, Özer & Boroiu, Andrei-Alexandru, 2022. "Multi-objective optimization of DI diesel engine performance and emission parameters fueled with Jet-A1 – Diesel blends," Energy, Elsevier, vol. 242(C).
    8. Chiong, Meng-Choung & Kang, Hooi-Siang & Shaharuddin, Nik Mohd Ridzuan & Mat, Shabudin & Quen, Lee Kee & Ten, Ki-Hong & Ong, Muk Chen, 2021. "Challenges and opportunities of marine propulsion with alternative fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seljak, T. & Buffi, M. & Valera-Medina, A. & Chong, C.T. & Chiaramonti, D. & Katrašnik, T., 2020. "Bioliquids and their use in power generation – A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    2. Suchocki, T. & Witanowski, Ł. & Lampart, P. & Kazimierski, P. & Januszewicz, K. & Gawron, B., 2021. "Experimental investigation of performance and emission characteristics of a miniature gas turbine supplied by blends of kerosene and waste tyre pyrolysis oil," Energy, Elsevier, vol. 215(PA).
    3. Kroyan, Yuri & Wojcieszyk, Michał & Kaario, Ossi & Larmi, Martti, 2022. "Modeling the impact of sustainable aviation fuel properties on end-use performance and emissions in aircraft jet engines," Energy, Elsevier, vol. 255(C).
    4. Rochelle, David & Najafi, Hamidreza, 2019. "A review of the effect of biodiesel on gas turbine emissions and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 129-137.
    5. Altarazi, Yazan S.M. & Abu Talib, Abd Rahim & Yu, Jianglong & Gires, Ezanee & Abdul Ghafir, Mohd Fahmi & Lucas, John & Yusaf, Talal, 2022. "Effects of biofuel on engines performance and emission characteristics: A review," Energy, Elsevier, vol. 238(PC).
    6. Gabriel Talero & Camilo Bayona-Roa & Giovanny Muñoz & Miguel Galindo & Vladimir Silva & Juan Pava & Mauricio Lopez, 2019. "Experimental Methodology and Facility for the J69-Engine Performance and Emissions Evaluation Using Jet A1 and Biodiesel Blends," Energies, MDPI, vol. 12(23), pages 1-10, November.
    7. Buffi, Marco & Valera-Medina, Agustin & Marsh, Richard & Pugh, Daniel & Giles, Anthony & Runyon, Jon & Chiaramonti, David, 2017. "Emissions characterization tests for hydrotreated renewable jet fuel from used cooking oil and its blends," Applied Energy, Elsevier, vol. 201(C), pages 84-93.
    8. Al Omari, Salah A.B. & Hamdan, Mohammad O. & Selim, Mohamed YE. & Elnajjar, Emad, 2019. "Combustion of jojoba-oil/diesel blends in a small scale furnace," Renewable Energy, Elsevier, vol. 131(C), pages 678-688.
    9. Enagi, Ibrahim I. & Al-attab, K.A. & Zainal, Z.A., 2018. "Liquid biofuels utilization for gas turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 43-55.
    10. Chen, Longfei & Zhang, Zhichao & Lu, Yiji & Zhang, Chi & Zhang, Xin & Zhang, Cuiqi & Roskilly, Anthony Paul, 2017. "Experimental study of the gaseous and particulate matter emissions from a gas turbine combustor burning butyl butyrate and ethanol blends," Applied Energy, Elsevier, vol. 195(C), pages 693-701.
    11. Sallevelt, J.L.H.P. & Gudde, J.E.P. & Pozarlik, A.K. & Brem, G., 2014. "The impact of spray quality on the combustion of a viscous biofuel in a micro gas turbine," Applied Energy, Elsevier, vol. 132(C), pages 575-585.
    12. Iman K. Reksowardojo & Long H. Duong & Rais Zain & Firman Hartono & Septhian Marno & Wawan Rustyawan & Nelliza Putri & Wisasurya Jatiwiramurti & Bayu Prabowo, 2020. "Performance and Exhaust Emissions of a Gas-Turbine Engine Fueled with Biojet/Jet A-1 Blends for the Development of Aviation Biofuel in Tropical Regions," Energies, MDPI, vol. 13(24), pages 1-14, December.
    13. Enagi, Ibrahim I. & Al-attab, K.A. & Zainal, Z.A. & Teoh, Yew Heng, 2022. "Palm biodiesel spray and combustion characteristics in a new micro gas turbine combustion chamber design," Energy, Elsevier, vol. 254(PB).
    14. Oni, Babalola Aisosa & Sanni, Samuel Eshorame & Ibegbu, Anayo Jerome & Tomomewo, Olusegun Stanley, 2023. "Evaluation of engine characteristics of a micro-gas turbine powered with JETA1 fuel mixed with Afzelia biodiesel and dimethyl ether (DME)," Renewable Energy, Elsevier, vol. 216(C).
    15. Paweł Niszczota & Maciej Chmielewski & Marian Gieras, 2022. "Fuel-Water Emulsion as an Alternative Fuel for Gas Turbines in the Context of Combustion Process Properties—A Review," Energies, MDPI, vol. 15(23), pages 1-21, November.
    16. Lim, Jackson Hwa Keen & Gan, Yong Yang & Ong, Hwai Chyuan & Lau, Beng Fye & Chen, Wei-Hsin & Chong, Cheng Tung & Ling, Tau Chuan & Klemeš, Jiří Jaromír, 2021. "Utilization of microalgae for bio-jet fuel production in the aviation sector: Challenges and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    17. Bai, Yuanqi & Wang, Ying & Wang, Xiaochen & Zhou, Qiongyang & Duan, Qimeng, 2021. "Development of physical-chemical surrogate models and skeletal mechanism for the spray and combustion simulation of RP-3 kerosene fuels," Energy, Elsevier, vol. 215(PB).
    18. Yilmaz, Nadir & Atmanli, Alpaslan, 2017. "Sustainable alternative fuels in aviation," Energy, Elsevier, vol. 140(P2), pages 1378-1386.
    19. Zong, Chao & Ji, Chenzhen & Cheng, Jiaying & Zhu, Tong & Guo, Desan & Li, Chengqin & Duan, Fei, 2022. "Toward off-design loads: Investigations on combustion and emissions characteristics of a micro gas turbine combustor by external combustion-air adjustments," Energy, Elsevier, vol. 253(C).
    20. Chong, Cheng Tung & Hochgreb, Simone, 2017. "Flame structure, spectroscopy and emissions quantification of rapeseed biodiesel under model gas turbine conditions," Applied Energy, Elsevier, vol. 185(P2), pages 1383-1392.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:162:y:2020:i:c:p:2227-2245. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.