IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v226y2018icp397-407.html
   My bibliography  Save this article

Effects of water content on evaporation and combustion characteristics of water emulsified diesel spray

Author

Listed:
  • Wang, Zhaowen
  • Shi, Shuguo
  • Huang, Sheng
  • Tang, Jie
  • Du, Tao
  • Cheng, Xiaobei
  • Huang, Ronghua
  • Chen, Jyh-Yuan

Abstract

Due to its potential of reducing NOx and soot emissions simultaneously while improving thermal efficiency, water emulsified diesel is considered as one of the most promising fuels for compression ignition engines. In this study, spray and combustion characteristics of neat diesel and water emulsified diesel with various water contents (10%, 20% and 30% by mass) were investigated. The influence of micro-explosion on high pressure spray characteristics of water emulsified diesel was optically observed and discussed. Experiments were conducted in a constant volume combustion chamber with a high-speed schlieren system to capture the spray and combustion processes. The results show that water content plays a significant role in affecting spray and combustion characteristics of water emulsified diesel. Under non-evaporating condition, the spray tip penetration increases with the water content but the corresponding spray angle decreases with the water content. Such an effect was found diminishing under evaporating condition. The spray volume of test fuels increases from non-evaporating to evaporating condition, and the relative volume increase of water emulsified diesel is at least 5 times higher than that of neat diesel. Both the ignition delay and flame lift-off length increase with water content. Consequently, the integrated natural flame luminosity decreases with the increase of water content. In addition, indirect evidences have proven that the occurrence of micro-explosion can enhance the breakup and evaporation processes of water emulsified diesel spray, and the use of water emulsified diesel can effectively reduce soot emission.

Suggested Citation

  • Wang, Zhaowen & Shi, Shuguo & Huang, Sheng & Tang, Jie & Du, Tao & Cheng, Xiaobei & Huang, Ronghua & Chen, Jyh-Yuan, 2018. "Effects of water content on evaporation and combustion characteristics of water emulsified diesel spray," Applied Energy, Elsevier, vol. 226(C), pages 397-407.
  • Handle: RePEc:eee:appene:v:226:y:2018:i:c:p:397-407
    DOI: 10.1016/j.apenergy.2018.06.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918308882
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.06.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Debnath, Biplab K. & Saha, Ujjwal K. & Sahoo, Niranjan, 2015. "A comprehensive review on the application of emulsions as an alternative fuel for diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 196-211.
    2. An, H. & Yang, W.M. & Chou, S.K. & Chua, K.J., 2012. "Combustion and emissions characteristics of diesel engine fueled by biodiesel at partial load conditions," Applied Energy, Elsevier, vol. 99(C), pages 363-371.
    3. Watanabe, Hirotatsu & Suzuki, Yoshiyuki & Harada, Takuji & Matsushita, Yohsuke & Aoki, Hideyuki & Miura, Takatoshi, 2010. "An experimental investigation of the breakup characteristics of secondary atomization of emulsified fuel droplet," Energy, Elsevier, vol. 35(2), pages 806-813.
    4. Park, Sangki & Woo, Seungchul & Kim, Hyungik & Lee, Kihyung, 2016. "The characteristic of spray using diesel water emulsified fuel in a diesel engine," Applied Energy, Elsevier, vol. 176(C), pages 209-220.
    5. Lin, Bo-Jhih & Chen, Wei-Hsin & Budzianowski, Wojciech M. & Hsieh, Cheng-Ting & Lin, Pei-Hsun, 2016. "Emulsification analysis of bio-oil and diesel under various combinations of emulsifiers," Applied Energy, Elsevier, vol. 178(C), pages 746-757.
    6. Elsanusi, Osama Ahmed & Roy, Murari Mohon & Sidhu, Manpreet Singh, 2017. "Experimental Investigation on a Diesel Engine Fueled by Diesel-Biodiesel Blends and their Emulsions at Various Engine Operating Conditions," Applied Energy, Elsevier, vol. 203(C), pages 582-593.
    7. Chelemuge, & Namioka, Tomoaki & Yoshikawa, Kunio & Takeshita, Masanori & Fujiwara, Koichi, 2012. "Commercial-scale demonstration of pollutant emission reduction and energy saving for industrial boilers by employing water/oil emulsified fuel," Applied Energy, Elsevier, vol. 93(C), pages 517-522.
    8. Roy, Sounak & Hegde, M.S. & Madras, Giridhar, 2009. "Catalysis for NOx abatement," Applied Energy, Elsevier, vol. 86(11), pages 2283-2297, November.
    9. Höök, Mikael & Tang, Xu, 2013. "Depletion of fossil fuels and anthropogenic climate change—A review," Energy Policy, Elsevier, vol. 52(C), pages 797-809.
    10. Hwang, Joonsik & Bae, Choongsik & Patel, Chetankumar & Agarwal, Rashmi A. & Gupta, Tarun & Kumar Agarwal, Avinash, 2017. "Investigations on air-fuel mixing and flame characteristics of biodiesel fuels for diesel engine application," Applied Energy, Elsevier, vol. 206(C), pages 1203-1213.
    11. Herreros, J.M. & Schroer, K. & Sukjit, E. & Tsolakis, A., 2015. "Extending the environmental benefits of ethanol–diesel blends through DGE incorporation," Applied Energy, Elsevier, vol. 146(C), pages 335-343.
    12. Zhaowen Wang & Shang Wu & Yuhan Huang & Yulin Chen & Shuguo Shi & Xiaobei Cheng & Ronghua Huang, 2017. "Evaporation and Ignition Characteristics of Water Emulsified Diesel under Conventional and Low Temperature Combustion Conditions," Energies, MDPI, vol. 10(8), pages 1-14, July.
    13. E, Jiaqiang & Pham, Minhhieu & Zhao, D. & Deng, Yuanwang & Le, DucHieu & Zuo, Wei & Zhu, Hao & Liu, Teng & Peng, Qingguo & Zhang, Zhiqing, 2017. "Effect of different technologies on combustion and emissions of the diesel engine fueled with biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 620-647.
    14. Hulwan, Dattatray Bapu & Joshi, Satishchandra V., 2011. "Performance, emission and combustion characteristic of a multicylinder DI diesel engine running on diesel–ethanol–biodiesel blends of high ethanol content," Applied Energy, Elsevier, vol. 88(12), pages 5042-5055.
    15. Fahd, M. Ebna Alam & Wenming, Yang & Lee, P.S. & Chou, S.K. & Yap, Christopher R., 2013. "Experimental investigation of the performance and emission characteristics of direct injection diesel engine by water emulsion diesel under varying engine load condition," Applied Energy, Elsevier, vol. 102(C), pages 1042-1049.
    16. Ogunkoya, Dolanimi & Li, Shuai & Rojas, Orlando J. & Fang, Tiegang, 2015. "Performance, combustion, and emissions in a diesel engine operated with fuel-in-water emulsions based on lignin," Applied Energy, Elsevier, vol. 154(C), pages 851-861.
    17. Choi, Byungchul & Jiang, Xiaolong & Kim, Young Kwon & Jung, Gilsung & Lee, Chunhwan & Choi, Inchul & Song, Chi Sung, 2015. "Effect of diesel fuel blend with n-butanol on the emission of a turbocharged common rail direct injection diesel engine," Applied Energy, Elsevier, vol. 146(C), pages 20-28.
    18. Ismael, Mhadi A. & Heikal, Morgan R. & Aziz, A. Rashid A. & Syah, Firman & Zainal A., Ezrann Z. & Crua, Cyril, 2018. "The effect of fuel injection equipment on the dispersed phase of water-in-diesel emulsions," Applied Energy, Elsevier, vol. 222(C), pages 762-771.
    19. Mwangi, John Kennedy & Lee, Wen-Jhy & Chang, Yu-Cheng & Chen, Chia-Yang & Wang, Lin-Chi, 2015. "An overview: Energy saving and pollution reduction by using green fuel blends in diesel engines," Applied Energy, Elsevier, vol. 159(C), pages 214-236.
    20. Ma, Yinjie & Huang, Sheng & Huang, Ronghua & Zhang, Yu & Xu, Shijie, 2017. "Ignition and combustion characteristics of n-pentanol–diesel blends in a constant volume chamber," Applied Energy, Elsevier, vol. 185(P1), pages 519-530.
    21. Jiang, Jibing & Li, Dinggen, 2016. "Theoretical analysis and experimental confirmation of exhaust temperature control for diesel vehicle NOx emissions reduction," Applied Energy, Elsevier, vol. 174(C), pages 232-244.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shen, Shiquan & Sun, Kai & Che, Zhizhao & Wang, Tianyou & Jia, Ming & Cai, Junqian, 2020. "Mechanism of micro-explosion of water-in-oil emulsified fuel droplet and its effect on soot generation," Energy, Elsevier, vol. 191(C).
    2. Mhadi A. Ismael & Morgan R. Heikal & A. Rashid A. Aziz & Cyril Crua & Mohmmed El-Adawy & Zuhaib Nissar & Masri B. Baharom & Ezrann Z. Zainal A. & Firmansyah, 2018. "Investigation of Puffing and Micro-Explosion of Water-in-Diesel Emulsion Spray Using Shadow Imaging," Energies, MDPI, vol. 11(9), pages 1-12, August.
    3. Ismael, Mhadi A. & A. Aziz, A. Rashid & Mohammed, Salah E. & Zainal A, Ezrann Z. & Baharom, Masri B. & Hagos, Ftwi Yohaness, 2021. "Macroscopic and microscopic spray structure of water-in-diesel emulsions," Energy, Elsevier, vol. 223(C).
    4. Wang, Zhaowen & Yuan, Bo & Cao, Junhui & Huang, Yuhan & Cheng, Xiaobei & Wang, Yuzhou & Zhang, Xinhua & Liu, Hao, 2022. "A new shift mechanism for micro-explosion of water-diesel emulsion droplets at different ambient temperatures," Applied Energy, Elsevier, vol. 323(C).
    5. Hossain, A.K. & Refahtalab, P. & Omran, A. & Smith, D.I. & Davies, P.A., 2020. "An experimental study on performance and emission characteristics of an IDI diesel engine operating with neat oil-diesel blend emulsion," Renewable Energy, Elsevier, vol. 146(C), pages 1041-1050.
    6. Gowrishankar, Sudarshan & Krishnasamy, Anand, 2023. "Emulsification – A promising approach to improve performance and reduce exhaust emissions of a biodiesel fuelled light-duty diesel engine," Energy, Elsevier, vol. 263(PC).
    7. Shi, Shuguo & Tomomatsu, Yasutaka & Chaturvedi, Bhaskar & Aznar, Miguel Sierra & Chen, Jyh-Yuan, 2021. "Engine efficiency enhancement and operation range extension by argon power cycle using natural gas," Applied Energy, Elsevier, vol. 281(C).
    8. Dhahad, Hayder A. & Chaichan, Miqdam T. & Megaritis, T., 2019. "Performance, regulated and unregulated exhaust emission of a stationary compression ignition engine fueled by water-ULSD emulsion," Energy, Elsevier, vol. 181(C), pages 1036-1050.
    9. XiangRong, Li & WeiHua, Zhao & HaoBu, Gao & FuShui, Liu, 2019. "Fuel and air mixing characteristics of wall-flow-guided combustion systems under a low excess air ratio condition in direct injection diesel engines," Energy, Elsevier, vol. 175(C), pages 554-566.
    10. Bifeng Yin & Bin Xu & Hekun Jia & Shenghao Yu, 2020. "The Effect of Elliptical Diesel Nozzles on Spray Liquid-Phase Penetration under Evaporative Conditions," Energies, MDPI, vol. 13(9), pages 1-14, May.
    11. De Giorgi, Maria Grazia & Fontanarosa, Donato & Ficarella, Antonio & Pescini, Elisa, 2020. "Effects on performance, combustion and pollutants of water emulsified fuel in an aeroengine combustor," Applied Energy, Elsevier, vol. 260(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ayhan, Vezir & Ece, Yılmaz Mert, 2020. "New application to reduce NOx emissions of diesel engines: Electronically controlled direct water injection at compression stroke," Applied Energy, Elsevier, vol. 260(C).
    2. De Giorgi, Maria Grazia & Fontanarosa, Donato & Ficarella, Antonio & Pescini, Elisa, 2020. "Effects on performance, combustion and pollutants of water emulsified fuel in an aeroengine combustor," Applied Energy, Elsevier, vol. 260(C).
    3. Ismael, Mhadi A. & Heikal, Morgan R. & Aziz, A. Rashid A. & Syah, Firman & Zainal A., Ezrann Z. & Crua, Cyril, 2018. "The effect of fuel injection equipment on the dispersed phase of water-in-diesel emulsions," Applied Energy, Elsevier, vol. 222(C), pages 762-771.
    4. Dmitrii V. Antonov & Roman M. Fedorenko & Pavel A. Strizhak, 2022. "Micro-Explosion Phenomenon: Conditions and Benefits," Energies, MDPI, vol. 15(20), pages 1-19, October.
    5. Sidhu, Manpreet Singh & Roy, Murari Mohon & Wang, Wilson, 2018. "Glycerine emulsions of diesel-biodiesel blends and their performance and emissions in a diesel engine," Applied Energy, Elsevier, vol. 230(C), pages 148-159.
    6. Elsanusi, Osama Ahmed & Roy, Murari Mohon & Sidhu, Manpreet Singh, 2017. "Experimental Investigation on a Diesel Engine Fueled by Diesel-Biodiesel Blends and their Emulsions at Various Engine Operating Conditions," Applied Energy, Elsevier, vol. 203(C), pages 582-593.
    7. Zhaowen Wang & Shang Wu & Yuhan Huang & Yulin Chen & Shuguo Shi & Xiaobei Cheng & Ronghua Huang, 2017. "Evaporation and Ignition Characteristics of Water Emulsified Diesel under Conventional and Low Temperature Combustion Conditions," Energies, MDPI, vol. 10(8), pages 1-14, July.
    8. Seifi, Mohammad Reza & Desideri, Umberto & Ghorbani, Zahra & Antonelli, Marco & Frigo, Stefano & Hassan-Beygi, Seyed Reza & Ghobadian, Barat, 2019. "Statistical evaluation of the effect of water percentage in water-diesel emulsion on the engine performance and exhaust emission parameters," Energy, Elsevier, vol. 180(C), pages 797-806.
    9. Ismael, Mhadi A. & A. Aziz, A. Rashid & Mohammed, Salah E. & Zainal A, Ezrann Z. & Baharom, Masri B. & Hagos, Ftwi Yohaness, 2021. "Macroscopic and microscopic spray structure of water-in-diesel emulsions," Energy, Elsevier, vol. 223(C).
    10. Shen, Shiquan & Sun, Kai & Che, Zhizhao & Wang, Tianyou & Jia, Ming & Cai, Junqian, 2020. "Mechanism of micro-explosion of water-in-oil emulsified fuel droplet and its effect on soot generation," Energy, Elsevier, vol. 191(C).
    11. Anufriev, I.S., 2021. "Review of water/steam addition in liquid-fuel combustion systems for NOx reduction: Waste-to-energy trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    12. Wang, Zhaowen & Yuan, Bo & Cao, Junhui & Huang, Yuhan & Cheng, Xiaobei & Wang, Yuzhou & Zhang, Xinhua & Liu, Hao, 2022. "A new shift mechanism for micro-explosion of water-diesel emulsion droplets at different ambient temperatures," Applied Energy, Elsevier, vol. 323(C).
    13. Saddam H. Al-lwayzy & Talal Yusaf & Khalid Saleh & Belal Yousif, 2019. "The Influence of Emulsified Water Fuel Containing Fresh Water Microalgae on Diesel Engine Performance, Combustion, Vibration and Emission," Energies, MDPI, vol. 12(13), pages 1-17, July.
    14. Park, Sangki & Woo, Seungchul & Kim, Hyungik & Lee, Kihyung, 2016. "The characteristic of spray using diesel water emulsified fuel in a diesel engine," Applied Energy, Elsevier, vol. 176(C), pages 209-220.
    15. Dhahad, Hayder A. & Chaichan, Miqdam T. & Megaritis, T., 2019. "Performance, regulated and unregulated exhaust emission of a stationary compression ignition engine fueled by water-ULSD emulsion," Energy, Elsevier, vol. 181(C), pages 1036-1050.
    16. Lin, Bo-Jhih & Chen, Wei-Hsin & Budzianowski, Wojciech M. & Hsieh, Cheng-Ting & Lin, Pei-Hsun, 2016. "Emulsification analysis of bio-oil and diesel under various combinations of emulsifiers," Applied Energy, Elsevier, vol. 178(C), pages 746-757.
    17. Yesilyurt, Murat Kadir & Cesur, Cüneyt & Aslan, Volkan & Yilbasi, Zeki, 2020. "The production of biodiesel from safflower (Carthamus tinctorius L.) oil as a potential feedstock and its usage in compression ignition engine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    18. Mukhtar, M.N.A. & Hagos, Ftwi Y. & Noor, M.M. & Mamat, Rizalman & Abdullah, A. Adam & Abd Aziz, Abd Rashid, 2019. "Tri-fuel emulsion with secondary atomization attributes for greener diesel engine – A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 490-506.
    19. Liu, Yu & Yuan, Zhipeng & Ma, Yinjie & Fu, Jianqin & Huang, Ronghua & Liu, Jingping, 2019. "Analysis of spray combustion characteristics of diesel, biodiesel and their n-pentanol blends based on a one-dimensional semi-phenomenological model," Applied Energy, Elsevier, vol. 238(C), pages 996-1009.
    20. Babu, D. & Karvembu, R. & Anand, R., 2018. "Impact of split injection strategy on combustion, performance and emissions characteristics of biodiesel fuelled common rail direct injection assisted diesel engine," Energy, Elsevier, vol. 165(PB), pages 577-592.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:226:y:2018:i:c:p:397-407. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.