IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i3p1386-1393.html
   My bibliography  Save this article

Technical feasibility studies for Langkawi WCO (waste cooking oil) derived-biodiesel

Author

Listed:
  • Kumaran, P.
  • Mazlini, Nur
  • Hussein, Ibrahim
  • Nazrain, M.
  • Khairul, M.

Abstract

A study has been done to consider Malaysian WCO (waste cooking oil) generated in an eco-tourism island, Langkawi, Malaysia as an alternative feedstock for biodiesel production. This paper presents the results of the comprehensive technical feasibility study for production of biodiesel from WCO feedstock. The results have shown feasibility of recycling WCO into biodiesel that is compliant with international fuel standard ASTM D6751. The study has given an indication on the appropriate processing scheme to be developed for recycling WCO into biodiesel as a substitute fuel for diesel vehicles in Langkawi that would enable the promotion of alternative fuel in the energy mix for long term environment sustainability.

Suggested Citation

  • Kumaran, P. & Mazlini, Nur & Hussein, Ibrahim & Nazrain, M. & Khairul, M., 2011. "Technical feasibility studies for Langkawi WCO (waste cooking oil) derived-biodiesel," Energy, Elsevier, vol. 36(3), pages 1386-1393.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:3:p:1386-1393
    DOI: 10.1016/j.energy.2011.02.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421100079X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.02.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin, Yung-Sung & Lin, Hai-Ping, 2010. "Study on the spray characteristics of methyl esters from waste cooking oil at elevated temperature," Renewable Energy, Elsevier, vol. 35(9), pages 1900-1907.
    2. Arjun B. Chhetri & K. Chris Watts & M. Rafiqul Islam, 2008. "Waste Cooking Oil as an Alternate Feedstock for Biodiesel Production," Energies, MDPI, vol. 1(1), pages 1-16, April.
    3. Gajendra Kumar & D. Kumar & Shailandra Singh & S. Kothari & Sumit Bhatt & Chandra P. Singh, 2010. "Continuous Low Cost Transesterification Process for the Production of Coconut Biodiesel," Energies, MDPI, vol. 3(1), pages 1-14, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Po-Ming & Lin, Yuan-Chung & Lin, Kuang C. & Jhang, Syu-Ruei & Chen, Shang-Cyuan & Wang, Chia-Chi & Lin, Ying-Chi, 2015. "Comparison of carbonyl compound emissions from a diesel engine generator fueled with blends of n-butanol, biodiesel and diesel," Energy, Elsevier, vol. 90(P1), pages 266-273.
    2. Maria Gabriela De Paola & Ivan Mazza & Rosy Paletta & Catia Giovanna Lopresto & Vincenza Calabrò, 2021. "Small-Scale Biodiesel Production Plants—An Overview," Energies, MDPI, vol. 14(7), pages 1-20, March.
    3. Ho, Sze-Hwee & Wong, Yiik-Diew & Chang, Victor Wei-Chung, 2014. "Evaluating the potential of biodiesel (via recycled cooking oil) use in Singapore, an urban city," Resources, Conservation & Recycling, Elsevier, vol. 91(C), pages 117-124.
    4. Ming-Chien Hsiao & Jui-Yang Kuo & Pei-Hsuan Hsieh & Shuhn-Shyurng Hou, 2018. "Improving Biodiesel Conversions from Blends of High- and Low-Acid-Value Waste Cooking Oils Using Sodium Methoxide as a Catalyst Based on a High Speed Homogenizer," Energies, MDPI, vol. 11(9), pages 1-11, August.
    5. Lam, Su Shiung & Wan Mahari, Wan Adibah & Cheng, Chin Kui & Omar, Rozita & Chong, Cheng Tung & Chase, Howard A., 2016. "Recovery of diesel-like fuel from waste palm oil by pyrolysis using a microwave heated bed of activated carbon," Energy, Elsevier, vol. 115(P1), pages 791-799.
    6. Zhang, Huiming & Xu, Zhidong & Zhou, Dequn & Cao, Jie, 2017. "Waste cooking oil-to-energy under incomplete information: Identifying policy options through an evolutionary game," Applied Energy, Elsevier, vol. 185(P1), pages 547-555.
    7. Zheng, Longyu & Hou, Yanfei & Li, Wu & Yang, Sen & Li, Qing & Yu, Ziniu, 2012. "Biodiesel production from rice straw and restaurant waste employing black soldier fly assisted by microbes," Energy, Elsevier, vol. 47(1), pages 225-229.
    8. Shahabuddin, M. & Kalam, M.A. & Masjuki, H.H. & Bhuiya, M.M.K. & Mofijur, M., 2012. "An experimental investigation into biodiesel stability by means of oxidation and property determination," Energy, Elsevier, vol. 44(1), pages 616-622.
    9. Pourzolfaghar, Hamed & Abnisa, Faisal & Daud, Wan Mohd Ashri Wan & Aroua, Mohamed Kheireddine, 2016. "A review of the enzymatic hydroesterification process for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 245-257.
    10. Raju, Pradeep & Masimalai, Senthil Kumar & Ganesan, Nataraj & Karthic, S.V., 2020. "Engine’s behavior on hydrogen addition of waste cooking oil fueled light duty diesel engine - A dual fuel approach," Energy, Elsevier, vol. 194(C).
    11. Chen, Kang-Shin & Lin, Yuan-Chung & Hsu, Kuo-Hsiang & Wang, Hsin-Kai, 2012. "Improving biodiesel yields from waste cooking oil by using sodium methoxide and a microwave heating system," Energy, Elsevier, vol. 38(1), pages 151-156.
    12. Zhang, Huiming & Zheng, Yu & Cao, Jie & Qiu, Yueming, 2017. "Has government intervention effectively encouraged the use of waste cooking oil as an energy source? Comparison of two Chinese biofuel companies," Energy, Elsevier, vol. 140(P1), pages 708-715.
    13. Liang, Xuezheng, 2013. "Synthesis of biodiesel from waste oil under mild conditions using novel acidic ionic liquid immobilization on poly divinylbenzene," Energy, Elsevier, vol. 63(C), pages 103-108.
    14. An, H. & Yang, W.M. & Maghbouli, A. & Li, J. & Chou, S.K. & Chua, K.J., 2013. "Performance, combustion and emission characteristics of biodiesel derived from waste cooking oils," Applied Energy, Elsevier, vol. 112(C), pages 493-499.
    15. Avinash, A. & Sasikumar, P. & Murugesan, A., 2018. "Understanding the interaction among the barriers of biodiesel production from waste cooking oil in India- an interpretive structural modeling approach," Renewable Energy, Elsevier, vol. 127(C), pages 678-684.
    16. Yun, Huimin & Wang, Meng & Feng, Wei & Tan, Tianwei, 2013. "Process simulation and energy optimization of the enzyme-catalyzed biodiesel production," Energy, Elsevier, vol. 54(C), pages 84-96.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jahirul, M.I. & Rasul, M.G. & Brown, R.J. & Senadeera, W. & Hosen, M.A. & Haque, R. & Saha, S.C. & Mahlia, T.M.I., 2021. "Investigation of correlation between chemical composition and properties of biodiesel using principal component analysis (PCA) and artificial neural network (ANN)," Renewable Energy, Elsevier, vol. 168(C), pages 632-646.
    2. Thanh Xuan NguyenThi & Jean-Patrick Bazile & David Bessières, 2018. "Density Measurements of Waste Cooking Oil Biodiesel and Diesel Blends Over Extended Pressure and Temperature Ranges," Energies, MDPI, vol. 11(5), pages 1-14, May.
    3. Ahmad Abbaszadeh-Mayvan & Barat Ghobadian & Gholamhassan Najafi & Talal Yusaf, 2018. "Intensification of Continuous Biodiesel Production from Waste Cooking Oils Using Shockwave Power Reactor: Process Evaluation and Optimization through Response Surface Methodology (RSM)," Energies, MDPI, vol. 11(10), pages 1-13, October.
    4. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
    5. Erika Carnevale & Giovanni Molari & Matteo Vittuari, 2017. "Used Cooking Oils in the Biogas Chain: A Technical and Economic Assessment," Energies, MDPI, vol. 10(2), pages 1-13, February.
    6. Mandolesi de Araújo, Carlos Daniel & de Andrade, Claudia Cristina & de Souza e Silva, Erika & Dupas, Francisco Antonio, 2013. "Biodiesel production from used cooking oil: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 445-452.
    7. Eugenia Guadalupe Ortiz Lechuga & Mauro Rodríguez Zúñiga & Katiushka Arévalo Niño, 2020. "Efficiency Evaluation on the Influence of Washing Methods for Biodiesel Produced from High Free Fatty Acid Waste Vegetable Oils through Selected Quality Parameters," Energies, MDPI, vol. 13(23), pages 1-14, November.
    8. Muteeb Ul Haq & Ali Turab Jafry & Saad Ahmad & Taqi Ahmad Cheema & Munib Qasim Ansari & Naseem Abbas, 2022. "Recent Advances in Fuel Additives and Their Spray Characteristics for Diesel-Based Blends," Energies, MDPI, vol. 15(19), pages 1-30, October.
    9. Elgharbawy, Abdallah S. & Ali, Rehab M., 2022. "Techno-economic assessment of the biodiesel production using natural minerals rocks as a heterogeneous catalyst via conventional and ultrasonic techniques," Renewable Energy, Elsevier, vol. 191(C), pages 161-175.
    10. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
    11. Di Fraia, S. & Massarotti, N. & Vanoli, L. & Costa, M., 2016. "Thermo-economic analysis of a novel cogeneration system for sewage sludge treatment," Energy, Elsevier, vol. 115(P3), pages 1560-1571.
    12. Balat, Mustafa & Balat, Havva, 2010. "Progress in biodiesel processing," Applied Energy, Elsevier, vol. 87(6), pages 1815-1835, June.
    13. Laureano Costarrosa & David Eduardo Leiva-Candia & Antonio José Cubero-Atienza & Juan José Ruiz & M. Pilar Dorado, 2018. "Optimization of the Transesterification of Waste Cooking Oil with Mg-Al Hydrotalcite Using Response Surface Methodology," Energies, MDPI, vol. 11(2), pages 1-9, January.
    14. Leng, Lijian & Li, Hui & Yuan, Xingzhong & Zhou, Wenguang & Huang, Huajun, 2018. "Bio-oil upgrading by emulsification/microemulsification: A review," Energy, Elsevier, vol. 161(C), pages 214-232.
    15. Hongzhan Xie & Lanbo Song & Yizhi Xie & Dong Pi & Chunyu Shao & Qizhao Lin, 2015. "An Experimental Study on the Macroscopic Spray Characteristics of Biodiesel and Diesel in a Constant Volume Chamber," Energies, MDPI, vol. 8(6), pages 1-21, June.
    16. Deeba, Farha & Kumar, Bijender & Arora, Neha & Singh, Sauraj & Kumar, Anuj & Han, Sung Soo & Negi, Yuvraj S., 2020. "Novel bio-based solid acid catalyst derived from waste yeast residue for biodiesel production," Renewable Energy, Elsevier, vol. 159(C), pages 127-139.
    17. Tacias-Pascacio, Veymar G. & Torrestiana-Sánchez, Beatriz & Dal Magro, Lucas & Virgen-Ortíz, Jose J. & Suárez-Ruíz, Francisco J. & Rodrigues, Rafael C. & Fernandez-Lafuente, Roberto, 2019. "Comparison of acid, basic and enzymatic catalysis on the production of biodiesel after RSM optimization," Renewable Energy, Elsevier, vol. 135(C), pages 1-9.
    18. Hasan, M.M. & Rahman, M.M., 2017. "Performance and emission characteristics of biodiesel–diesel blend and environmental and economic impacts of biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 938-948.
    19. Wen-Tien Tsai, 2019. "Mandatory Recycling of Waste Cooking Oil from Residential and Commercial Sectors in Taiwan," Resources, MDPI, vol. 8(1), pages 1-11, February.
    20. Marcos A. Coronado & Gisela Montero & Conrado García & Benjamín Valdez & Ramón Ayala & Armando Pérez, 2017. "Quality Assessment of Biodiesel Blends Proposed by the New Mexican Policy Framework," Energies, MDPI, vol. 10(5), pages 1-14, May.

    More about this item

    Keywords

    Biodiesel; Waste cooking oil; ASTM D6751;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:3:p:1386-1393. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.