IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i5p631-d97590.html
   My bibliography  Save this article

Quality Assessment of Biodiesel Blends Proposed by the New Mexican Policy Framework

Author

Listed:
  • Marcos A. Coronado

    (Universidad Autónoma de Baja California, Instituto de Ingeniería, Blvd. Benito Juárez, Insurgentes Este, 21280 Mexicali, Mexico)

  • Gisela Montero

    (Universidad Autónoma de Baja California, Instituto de Ingeniería, Blvd. Benito Juárez, Insurgentes Este, 21280 Mexicali, Mexico)

  • Conrado García

    (Universidad Autónoma de Baja California, Instituto de Ingeniería, Blvd. Benito Juárez, Insurgentes Este, 21280 Mexicali, Mexico)

  • Benjamín Valdez

    (Universidad Autónoma de Baja California, Instituto de Ingeniería, Blvd. Benito Juárez, Insurgentes Este, 21280 Mexicali, Mexico)

  • Ramón Ayala

    (Universidad Autónoma de Baja California, Instituto de Ingeniería, Blvd. Benito Juárez, Insurgentes Este, 21280 Mexicali, Mexico)

  • Armando Pérez

    (Universidad Autónoma de Baja California, Escuela de Ciencias de la Ingeniería y Tecnología, Unidad Valle de las Palmas, km 10.5 carretera Tijuana, 22260 Tecate, Mexico)

Abstract

Nowadays, biodiesel is being promoted worldwide as a sustainable and alternative to diesel fuel. However, there is still a lack of a biodiesel market in Mexico. Hence, a new initiative to reform the Mexican biofuels framework by decree includes the production and use of biodiesel. This regulation can ensure and contribute to the development of the biodiesel market in Mexico. The initiative proposes to start from the B5.8 blend by the end of 2017 and reach the B10 by 2020. Therefore, the objective of the present work was the quality assessment of biodiesel blends proposed by the new Mexican policy framework. The techniques applied were Fourier transform infrared (FT-IR) spectroscopy, X-ray fluorescence analysis, scanning electron microscopy analysis, viscosity, higher heating value, thermogravimetric analysis, refractive index, acid number, specific gravity, flash point, and copper strip corrosion based on ASTM standards. The results indicate that the biodiesel and its blends B5.8 and B10 fulfilled relevant quality specifications established in the ASTM D6751 and EN14214 standards for fuels. However, the fuel blends presented a higher heating value (HHV) diminution. The experimental HHV percentages decrease for the mandatory mixtures compared to diesel were 2.29% (B10), and 0.29% (B5.8).

Suggested Citation

  • Marcos A. Coronado & Gisela Montero & Conrado García & Benjamín Valdez & Ramón Ayala & Armando Pérez, 2017. "Quality Assessment of Biodiesel Blends Proposed by the New Mexican Policy Framework," Energies, MDPI, vol. 10(5), pages 1-14, May.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:5:p:631-:d:97590
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/5/631/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/5/631/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abdolsaeid Ganjehkaviri & Mohammad Nazri Mohd Jaafar & Seyed Ehsan Hosseini & Anas Basri Musthafa, 2016. "Performance Evaluation of Palm Oil-Based Biodiesel Combustion in an Oil Burner," Energies, MDPI, vol. 9(2), pages 1-10, February.
    2. Enrico Mattarelli & Carlo Alberto Rinaldini & Tommaso Savioli, 2015. "Combustion Analysis of a Diesel Engine Running on Different Biodiesel Blends," Energies, MDPI, vol. 8(4), pages 1-11, April.
    3. Coronado, Marcos & Montero, Gisela & Valdez, Benjamín & Stoytcheva, Margarita & Eliezer, Amir & García, Conrado & Campbell, Héctor & Pérez, Armando, 2014. "Degradation of nitrile rubber fuel hose by biodiesel use," Energy, Elsevier, vol. 68(C), pages 364-369.
    4. Nita, I. & Geacai, S. & Iulian, O., 2011. "Measurements and correlations of physico-chemical properties to composition of pseudo-binary mixtures with biodiesel," Renewable Energy, Elsevier, vol. 36(12), pages 3417-3423.
    5. Arjun B. Chhetri & K. Chris Watts & M. Rafiqul Islam, 2008. "Waste Cooking Oil as an Alternate Feedstock for Biodiesel Production," Energies, MDPI, vol. 1(1), pages 1-16, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Md Mofijur Rahman & Mohammad Rasul & Nur Md Sayeed Hassan & Justin Hyde, 2016. "Prospects of Biodiesel Production from Macadamia Oil as an Alternative Fuel for Diesel Engines," Energies, MDPI, vol. 9(6), pages 1-15, May.
    2. Wongwuttanasatian, Tanakorn & Jookjantra, Kittichai, 2020. "Effect of dual-frequency pulsed ultrasonic excitation and catalyst size for biodiesel production," Renewable Energy, Elsevier, vol. 152(C), pages 1220-1226.
    3. Thanh Xuan NguyenThi & Jean-Patrick Bazile & David Bessières, 2018. "Density Measurements of Waste Cooking Oil Biodiesel and Diesel Blends Over Extended Pressure and Temperature Ranges," Energies, MDPI, vol. 11(5), pages 1-14, May.
    4. Perumal, Varatharaju & Ilangkumaran, M., 2018. "Water emulsified hybrid pongamia biodiesel as a modified fuel for the experimental analysis of performance, combustion and emission characteristics of a direct injection diesel engine," Renewable Energy, Elsevier, vol. 121(C), pages 623-631.
    5. Ahmad Abbaszadeh-Mayvan & Barat Ghobadian & Gholamhassan Najafi & Talal Yusaf, 2018. "Intensification of Continuous Biodiesel Production from Waste Cooking Oils Using Shockwave Power Reactor: Process Evaluation and Optimization through Response Surface Methodology (RSM)," Energies, MDPI, vol. 11(10), pages 1-13, October.
    6. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
    7. Erika Carnevale & Giovanni Molari & Matteo Vittuari, 2017. "Used Cooking Oils in the Biogas Chain: A Technical and Economic Assessment," Energies, MDPI, vol. 10(2), pages 1-13, February.
    8. Dwivedi, Gaurav & Sharma, M.P., 2014. "Impact of cold flow properties of biodiesel on engine performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 650-656.
    9. Fabián Vargas & Armando Pérez & Rene Delgado & Emilio Hernández & José Alejandro Suástegui, 2019. "Performance Analysis of a Compression Ignition Engine Using Mixture Biodiesel Palm and Diesel," Sustainability, MDPI, vol. 11(18), pages 1-26, September.
    10. Tolgahan Kaya & Osman Akın Kutlar & Ozgur Oguz Taskiran, 2018. "Evaluation of the Effects of Biodiesel on Emissions and Performance by Comparing the Results of the New European Drive Cycle and Worldwide Harmonized Light Vehicles Test Cycle," Energies, MDPI, vol. 11(10), pages 1-14, October.
    11. Mandolesi de Araújo, Carlos Daniel & de Andrade, Claudia Cristina & de Souza e Silva, Erika & Dupas, Francisco Antonio, 2013. "Biodiesel production from used cooking oil: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 445-452.
    12. Arunkumar, M. & Kannan, M. & Murali, G., 2019. "Experimental studies on engine performance and emission characteristics using castor biodiesel as fuel in CI engine," Renewable Energy, Elsevier, vol. 131(C), pages 737-744.
    13. Eugenia Guadalupe Ortiz Lechuga & Mauro Rodríguez Zúñiga & Katiushka Arévalo Niño, 2020. "Efficiency Evaluation on the Influence of Washing Methods for Biodiesel Produced from High Free Fatty Acid Waste Vegetable Oils through Selected Quality Parameters," Energies, MDPI, vol. 13(23), pages 1-14, November.
    14. Rochelle, David & Najafi, Hamidreza, 2019. "A review of the effect of biodiesel on gas turbine emissions and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 129-137.
    15. Adepoju, T.F. & Ibeh, M.A. & Udoetuk, E.N. & Babatunde, E.O., 2021. "Quaternary blend of Carica papaya - Citrus sinesis - Hibiscus sabdariffa - Waste used oil for biodiesel synthesis using CaO-based catalyst derived from binary mix of Lattorina littorea and Mactra cora," Renewable Energy, Elsevier, vol. 171(C), pages 22-33.
    16. Muhammad Syahiran Abdul Malik & Ashrul Ishak Mohamad Shaiful & Mohd Shuisma Mohd. Ismail & Mohammad Nazri Mohd Jaafar & Amirah Mohamad Sahar, 2017. "Combustion and Emission Characteristics of Coconut-Based Biodiesel in a Liquid Fuel Burner," Energies, MDPI, vol. 10(4), pages 1-12, April.
    17. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
    18. Di Fraia, S. & Massarotti, N. & Vanoli, L. & Costa, M., 2016. "Thermo-economic analysis of a novel cogeneration system for sewage sludge treatment," Energy, Elsevier, vol. 115(P3), pages 1560-1571.
    19. Balat, Mustafa & Balat, Havva, 2010. "Progress in biodiesel processing," Applied Energy, Elsevier, vol. 87(6), pages 1815-1835, June.
    20. Laureano Costarrosa & David Eduardo Leiva-Candia & Antonio José Cubero-Atienza & Juan José Ruiz & M. Pilar Dorado, 2018. "Optimization of the Transesterification of Waste Cooking Oil with Mg-Al Hydrotalcite Using Response Surface Methodology," Energies, MDPI, vol. 11(2), pages 1-9, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:5:p:631-:d:97590. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.