IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v168y2021icp632-646.html
   My bibliography  Save this article

Investigation of correlation between chemical composition and properties of biodiesel using principal component analysis (PCA) and artificial neural network (ANN)

Author

Listed:
  • Jahirul, M.I.
  • Rasul, M.G.
  • Brown, R.J.
  • Senadeera, W.
  • Hosen, M.A.
  • Haque, R.
  • Saha, S.C.
  • Mahlia, T.M.I.

Abstract

Biodiesel will provide a significant renewable energy source for transportation in the near future. In the present study, principal component analysis (PCA) has been used to understand the relationship between important properties of biodiesel and its chemical composition. Finally, several artificial intelligence-based models were developed to predict specific biodiesel properties based on their chemical composition. The experimental study was conducted in order to generate training data for the artificial neural network (ANN). Available (experimental) data from the literature was also employed for this modeling strategy. The analytical part of this study found a complex multi-dimensional correlation between chemical composition and biodiesel properties. Average numbers of double bonds in the chemical structure (representing the unsaturated component in biodiesel) and the poly-unsaturated component in biodiesel had a great impact on biodiesel properties. The simulation result in this study demonstrated that ANN is a useful tool for investigating the fuel properties from its chemical composition which eventually can replace the time consuming and costly experimental test.

Suggested Citation

  • Jahirul, M.I. & Rasul, M.G. & Brown, R.J. & Senadeera, W. & Hosen, M.A. & Haque, R. & Saha, S.C. & Mahlia, T.M.I., 2021. "Investigation of correlation between chemical composition and properties of biodiesel using principal component analysis (PCA) and artificial neural network (ANN)," Renewable Energy, Elsevier, vol. 168(C), pages 632-646.
  • Handle: RePEc:eee:renene:v:168:y:2021:i:c:p:632-646
    DOI: 10.1016/j.renene.2020.12.078
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120320188
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.12.078?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kaya, Canan & Hamamci, Candan & Baysal, Akin & Akba, Osman & Erdogan, Sait & Saydut, Abdurrahman, 2009. "Methyl ester of peanut (Arachis hypogea L.) seed oil as a potential feedstock for biodiesel production," Renewable Energy, Elsevier, vol. 34(5), pages 1257-1260.
    2. Atapour, Mehdi & Kariminia, Hamid-Reza, 2011. "Characterization and transesterification of Iranian bitter almond oil for biodiesel production," Applied Energy, Elsevier, vol. 88(7), pages 2377-2381, July.
    3. Gajendra Kumar & D. Kumar & Shailandra Singh & S. Kothari & Sumit Bhatt & Chandra P. Singh, 2010. "Continuous Low Cost Transesterification Process for the Production of Coconut Biodiesel," Energies, MDPI, vol. 3(1), pages 1-14, January.
    4. Albuquerque, M.C.G. & Machado, Y.L. & Torres, A.E.B. & Azevedo, D.C.S. & Cavalcante, C.L. & Firmiano, L.R. & Parente, E.J.S., 2009. "Properties of biodiesel oils formulated using different biomass sources and their blends," Renewable Energy, Elsevier, vol. 34(3), pages 857-859.
    5. Meher, L.C. & Vidya Sagar, D. & Naik, S.N., 2006. "Technical aspects of biodiesel production by transesterification--a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(3), pages 248-268, June.
    6. Mohammed I. Jahirul & Richard J. Brown & Wijitha Senadeera & Ian M. O'Hara & Zoran D. Ristovski, 2013. "The Use of Artificial Neural Networks for Identifying Sustainable Biodiesel Feedstocks," Energies, MDPI, vol. 6(8), pages 1-43, July.
    7. Barnwal, B.K. & Sharma, M.P., 2005. "Prospects of biodiesel production from vegetable oils in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(4), pages 363-378, August.
    8. Nakpong, Piyanuch & Wootthikanokkhan, Sasiwimol, 2010. "High free fatty acid coconut oil as a potential feedstock for biodiesel production in Thailand," Renewable Energy, Elsevier, vol. 35(8), pages 1682-1687.
    9. Fernando, Sandun & Karra, Prashanth & Hernandez, Rafael & Jha, Saroj Kumar, 2007. "Effect of incompletely converted soybean oil on biodiesel quality," Energy, Elsevier, vol. 32(5), pages 844-851.
    10. Arjun B. Chhetri & K. Chris Watts & M. Rafiqul Islam, 2008. "Waste Cooking Oil as an Alternate Feedstock for Biodiesel Production," Energies, MDPI, vol. 1(1), pages 1-16, April.
    11. Godiganur, Sharanappa & Suryanarayana Murthy, C.H. & Reddy, Rana Prathap, 2009. "6BTA 5.9 G2-1 Cummins engine performance and emission tests using methyl ester mahua (Madhuca indica) oil/diesel blends," Renewable Energy, Elsevier, vol. 34(10), pages 2172-2177.
    12. Pereira, Roberto G. & Oliveira, Cesar D. & Oliveira, Jorge L. & Oliveira, Paulo Cesar P. & Fellows, Carlos E. & Piamba, Oscar E., 2007. "Exhaust emissions and electric energy generation in a stationary engine using blends of diesel and soybean biodiesel," Renewable Energy, Elsevier, vol. 32(14), pages 2453-2460.
    13. Qi, D.H. & Geng, L.M. & Chen, H. & Bian, Y.ZH. & Liu, J. & Ren, X.CH., 2009. "Combustion and performance evaluation of a diesel engine fueled with biodiesel produced from soybean crude oil," Renewable Energy, Elsevier, vol. 34(12), pages 2706-2713.
    14. Wu, Xuan & Leung, Dennis Y.C., 2011. "Optimization of biodiesel production from camelina oil using orthogonal experiment," Applied Energy, Elsevier, vol. 88(11), pages 3615-3624.
    15. Öner, Cengiz & Altun, Sehmus, 2009. "Biodiesel production from inedible animal tallow and an experimental investigation of its use as alternative fuel in a direct injection diesel engine," Applied Energy, Elsevier, vol. 86(10), pages 2114-2120, October.
    16. Puhan, Sukumar & Jegan, R. & Balasubbramanian, K. & Nagarajan, G., 2009. "Effect of injection pressure on performance, emission and combustion characteristics of high linolenic linseed oil methyl ester in a DI diesel engine," Renewable Energy, Elsevier, vol. 34(5), pages 1227-1233.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Suvarna, Manu & Jahirul, Mohammad Islam & Aaron-Yeap, Wai Hung & Augustine, Cheryl Valencia & Umesh, Anushri & Rasul, Mohammad Golam & Günay, Mehmet Erdem & Yildirim, Ramazan & Janaun, Jidon, 2022. "Predicting biodiesel properties and its optimal fatty acid profile via explainable machine learning," Renewable Energy, Elsevier, vol. 189(C), pages 245-258.
    2. Simsek, Suleyman & Uslu, Samet & Simsek, Hatice, 2022. "Proportional impact prediction model of animal waste fat-derived biodiesel by ANN and RSM technique for diesel engine," Energy, Elsevier, vol. 239(PD).
    3. Mallesh B. Sanjeevannavar & Nagaraj R. Banapurmath & V. Dananjaya Kumar & Ashok M. Sajjan & Irfan Anjum Badruddin & Chandramouli Vadlamudi & Sanjay Krishnappa & Sarfaraz Kamangar & Rahmath Ulla Baig &, 2023. "Machine Learning Prediction and Optimization of Performance and Emissions Characteristics of IC Engine," Sustainability, MDPI, vol. 15(18), pages 1-30, September.
    4. Oliveira, Augusto Cesar Laviola de & Renato, Natalia dos Santos & Martins, Marcio Arêdes & Mendonça, Isabela Miranda de & Moraes, Camile Arêdes & Lago, Lucas Fernandes Rocha, 2023. "Renewable energy solutions based on artificial intelligence for farms in the state of Minas Gerais, Brazil: Analysis and proposition," Renewable Energy, Elsevier, vol. 204(C), pages 24-38.
    5. P. A. Harari & N. R. Banapurmath & V. S. Yaliwal & T. M. Yunus Khan & Irfan Anjum Badruddin & Sarfaraz Kamangar & Teuku Meurah Indra Mahlia, 2021. "Effect of Injection Timing and Injection Duration of Manifold Injected Fuels in Reactivity Controlled Compression Ignition Engine Operated with Renewable Fuels," Energies, MDPI, vol. 14(15), pages 1-19, July.
    6. Cuiling Li & Xiu Wang & Liping Chen & Xueguan Zhao & Yang Li & Mingzhou Chen & Haowei Liu & Changyuan Zhai, 2023. "Grading and Detection Method of Asparagus Stem Blight Based on Hyperspectral Imaging of Asparagus Crowns," Agriculture, MDPI, vol. 13(9), pages 1-26, August.
    7. Mohammad Mahdi Forootan & Iman Larki & Rahim Zahedi & Abolfazl Ahmadi, 2022. "Machine Learning and Deep Learning in Energy Systems: A Review," Sustainability, MDPI, vol. 14(8), pages 1-49, April.
    8. Murugapoopathi, S. & Surendarnath, S. & Ramachandran, T. & Amesho, Kassian T.T. & Senthil, S., 2023. "Energy and exergy analysis of VCR engine fueled with rubber-seed oil methyl ester using response surface methodology," Energy, Elsevier, vol. 280(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumar, Niraj & Varun, & Chauhan, Sant Ram, 2013. "Performance and emission characteristics of biodiesel from different origins: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 633-658.
    2. Subramaniam, D. & Murugesan, A. & Avinash, A. & Kumaravel, A., 2013. "Bio-diesel production and its engine characteristics—An expatiate view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 361-370.
    3. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
    4. Atabani, A.E. & Silitonga, A.S. & Ong, H.C. & Mahlia, T.M.I. & Masjuki, H.H. & Badruddin, Irfan Anjum & Fayaz, H., 2013. "Non-edible vegetable oils: A critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 211-245.
    5. Takase, Mohammed & Zhao, Ting & Zhang, Min & Chen, Yao & Liu, Hongyang & Yang, Liuqing & Wu, Xiangyang, 2015. "An expatiate review of neem, jatropha, rubber and karanja as multipurpose non-edible biodiesel resources and comparison of their fuel, engine and emission properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 495-520.
    6. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    7. Fazal, M.A. & Haseeb, A.S.M.A. & Masjuki, H.H., 2011. "Biodiesel feasibility study: An evaluation of material compatibility; performance; emission and engine durability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1314-1324, February.
    8. Datta, Ambarish & Mandal, Bijan Kumar, 2016. "A comprehensive review of biodiesel as an alternative fuel for compression ignition engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 799-821.
    9. Habibullah, M. & Masjuki, H.H. & Kalam, M.A. & Rahman, S.M. Ashrafur & Mofijur, M. & Mobarak, H.M. & Ashraful, A.M., 2015. "Potential of biodiesel as a renewable energy source in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 819-834.
    10. Sajjadi, Baharak & Raman, Abdul Aziz Abdul & Arandiyan, Hamidreza, 2016. "A comprehensive review on properties of edible and non-edible vegetable oil-based biodiesel: Composition, specifications and prediction models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 62-92.
    11. Balat, Mustafa & Balat, Havva, 2010. "Progress in biodiesel processing," Applied Energy, Elsevier, vol. 87(6), pages 1815-1835, June.
    12. Arbab, M.I. & Masjuki, H.H. & Varman, M. & Kalam, M.A. & Imtenan, S. & Sajjad, H., 2013. "Fuel properties, engine performance and emission characteristic of common biodiesels as a renewable and sustainable source of fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 133-147.
    13. Mohammed I. Jahirul & Richard J. Brown & Wijitha Senadeera & Ian M. O'Hara & Zoran D. Ristovski, 2013. "The Use of Artificial Neural Networks for Identifying Sustainable Biodiesel Feedstocks," Energies, MDPI, vol. 6(8), pages 1-43, July.
    14. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K. & Hazrat, M.A., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel – Part 2: Properties, performance and emission characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1129-1146.
    15. Atabani, A.E. & Silitonga, A.S. & Badruddin, Irfan Anjum & Mahlia, T.M.I. & Masjuki, H.H. & Mekhilef, S., 2012. "A comprehensive review on biodiesel as an alternative energy resource and its characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2070-2093.
    16. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Atabani, A.E. & Shahabuddin, M. & Palash, S.M. & Hazrat, M.A., 2013. "Effect of biodiesel from various feedstocks on combustion characteristics, engine durability and materials compatibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 441-455.
    17. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    18. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
    19. E, Jiaqiang & Pham, Minhhieu & Zhao, D. & Deng, Yuanwang & Le, DucHieu & Zuo, Wei & Zhu, Hao & Liu, Teng & Peng, Qingguo & Zhang, Zhiqing, 2017. "Effect of different technologies on combustion and emissions of the diesel engine fueled with biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 620-647.
    20. Shahir, V.K. & Jawahar, C.P. & Suresh, P.R., 2015. "Comparative study of diesel and biodiesel on CI engine with emphasis to emissions—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 686-697.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:168:y:2021:i:c:p:632-646. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.