IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v280y2023ics0360544223016328.html
   My bibliography  Save this article

Energy and exergy analysis of VCR engine fueled with rubber-seed oil methyl ester using response surface methodology

Author

Listed:
  • Murugapoopathi, S.
  • Surendarnath, S.
  • Ramachandran, T.
  • Amesho, Kassian T.T.
  • Senthil, S.

Abstract

This study presents a comprehensive analysis of the thermodynamic performance of a variable compression ratio engine fueled with rubber-seed oil methyl ester blended with diesel. The objective is to evaluate the energy and exergy characteristics according to the first and second laws of thermodynamics for various compression ratios and supercharging pressures. A 3.5 kW engine with compression ratios values ranging from 18:1 to 22:1 and SC pressures of 0, 0.25, and 0.5 bar (g) at 80% load was considered. The inlet manifold pressure was controlled using a centrifugal-type blower (1.5 m3/min, 350 W, 240 V AC) with an adjustable valve. Key fuel energy parameters including shaft energy, cylinder pressure, brake specific energy consumption, thermal efficiency, heat release rate, absorbed energy by cooling water, exhaust gas temperature, exergy efficiency, exergy destruction, exhaust energy, and emissions were analyzed. Results showed significant improvements in shaft energy (35.51%), thermal efficiency (35.37%), and heat release rate (25.17 J/°CA) for compression ratios 20 and supercharging pressure of 0.25 bar, with a reduction in brake specific energy consumption of 2.912 kJ/s kW. The second law efficiency and irreversibility were observed to be 60.31% and 0.0118 kW/K, respectively. Experimental findings demonstrated a reduction in carbon monoxide (25.12%) and hydrocarbon (40%) under the aforementioned conditions. Response surface methodology was employed to predict optimal operating conditions, and the equations were validated using analysis of variance and p-test. The D-optimality test facilitated the determination of optimal operating parameters for different responses through multi-objective optimization techniques. Individual desirability values were combined to obtain a composite desirability of 0.9054. The study identified compression ratios 18 with a supercharging pressure of 1.78 bar as the optimum operating condition for 20% fuel blends in a low-speed agricultural diesel engine, resulting in a remarkable improvement of 41.24% in energy efficiency and 68.45% in exergy efficiency, with minimal emissions.

Suggested Citation

  • Murugapoopathi, S. & Surendarnath, S. & Ramachandran, T. & Amesho, Kassian T.T. & Senthil, S., 2023. "Energy and exergy analysis of VCR engine fueled with rubber-seed oil methyl ester using response surface methodology," Energy, Elsevier, vol. 280(C).
  • Handle: RePEc:eee:energy:v:280:y:2023:i:c:s0360544223016328
    DOI: 10.1016/j.energy.2023.128238
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223016328
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128238?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zheng, Yuanzhou & Shadloo, Mostafa Safdari & Nasiri, Hossein & Maleki, Akbar & Karimipour, Arash & Tlili, Iskander, 2020. "Prediction of viscosity of biodiesel blends using various artificial model and comparison with empirical correlations," Renewable Energy, Elsevier, vol. 153(C), pages 1296-1306.
    2. Ambat, Indu & Srivastava, Varsha & Sillanpää, Mika, 2018. "Recent advancement in biodiesel production methodologies using various feedstock: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 356-369.
    3. Simsek, Suleyman & Uslu, Samet & Simsek, Hatice, 2022. "Proportional impact prediction model of animal waste fat-derived biodiesel by ANN and RSM technique for diesel engine," Energy, Elsevier, vol. 239(PD).
    4. Kumar, A. Naresh & Kishore, P.S. & Raju, K. Brahma & Ashok, B. & Vignesh, R. & Jeevanantham, A.K. & Nanthagopal, K. & Tamilvanan, A., 2020. "Decanol proportional effect prediction model as additive in palm biodiesel using ANN and RSM technique for diesel engine," Energy, Elsevier, vol. 213(C).
    5. Asadi, Asgar & Kadijani, Omid Nouri & Doranehgard, Mohammad Hossein & Bozorg, Mehdi Vahabzadeh & Xiong, Qingang & Shadloo, Mostafa Safdari & Li, Larry K.B., 2020. "Numerical study on the application of biodiesel and bioethanol in a multiple injection diesel engine," Renewable Energy, Elsevier, vol. 150(C), pages 1019-1029.
    6. Jahirul, M.I. & Rasul, M.G. & Brown, R.J. & Senadeera, W. & Hosen, M.A. & Haque, R. & Saha, S.C. & Mahlia, T.M.I., 2021. "Investigation of correlation between chemical composition and properties of biodiesel using principal component analysis (PCA) and artificial neural network (ANN)," Renewable Energy, Elsevier, vol. 168(C), pages 632-646.
    7. Mitchell, Brett J. & Zare, Ali & Bodisco, Timothy A. & Nabi, Md Nurun & Hossain, Farhad M. & Ristovski, Zoran D. & Brown, Richard J., 2017. "Engine blow-by with oxygenated fuels: A comparative study into cold and hot start operation," Energy, Elsevier, vol. 140(P1), pages 612-624.
    8. Zheng, Junnian & Caton, Jerald A., 2012. "Second law analysis of a low temperature combustion diesel engine: Effect of injection timing and exhaust gas recirculation," Energy, Elsevier, vol. 38(1), pages 78-84.
    9. Simsek, Suleyman & Uslu, Samet & Simsek, Hatice & Uslu, Gonca, 2021. "Multi-objective-optimization of process parameters of diesel engine fueled with biodiesel/2-ethylhexyl nitrate by using Taguchi method," Energy, Elsevier, vol. 231(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Uslu, Samet & Simsek, Suleyman & Simsek, Hatice, 2023. "RSM modeling of different amounts of nano-TiO2 supplementation to a diesel engine running with hemp seed oil biodiesel/diesel fuel blends," Energy, Elsevier, vol. 266(C).
    2. Simsek, Suleyman & Uslu, Samet & Simsek, Hatice, 2022. "Proportional impact prediction model of animal waste fat-derived biodiesel by ANN and RSM technique for diesel engine," Energy, Elsevier, vol. 239(PD).
    3. Manimaran, Rajayokkiam & Mohanraj, Thangavelu & Venkatesan, Moorthy & Ganesan, Rajamohan & Balasubramanian, Dhinesh, 2022. "A computational technique for prediction and optimization of VCR engine performance and emission parameters fuelled with Trichosanthes cucumerina biodiesel using RSM with desirability function approac," Energy, Elsevier, vol. 254(PB).
    4. Dewangan, Ashish & Mallick, Ashis & Yadav, Ashok Kumar & Islam, Saiful & Saleel, C Ahamed & Shaik, Saboor & Ağbulut, Ümit, 2023. "Production of oxy-hydrogen gas and the impact of its usability on CI engine combustion, performance, and emission behaviors," Energy, Elsevier, vol. 278(PB).
    5. Yaman, Hayri & Yesilyurt, Murat Kadir & Uslu, Samet, 2022. "Simultaneous optimization of multiple engine parameters of a 1-heptanol / gasoline fuel blends operated a port-fuel injection spark-ignition engine using response surface methodology approach," Energy, Elsevier, vol. 238(PC).
    6. Wang, Buyu & Pamminger, Michael & Wallner, Thomas, 2019. "Impact of fuel and engine operating conditions on efficiency of a heavy duty truck engine running compression ignition mode using energy and exergy analysis," Applied Energy, Elsevier, vol. 254(C).
    7. Zefei Tan & Jun Wang & Wengang Chen & Lizhong Shen & Yuhua Bi, 2021. "Study on the Influence of EGR on the Combustion Performance of Biofuel Diesel at Different Ambient Simulated Pressures," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    8. Hoseinpour, Marziyeh & Sadrnia, Hassan & Tabasizadeh, Mohammad & Ghobadian, Barat, 2017. "Energy and exergy analyses of a diesel engine fueled with diesel, biodiesel-diesel blend and gasoline fumigation," Energy, Elsevier, vol. 141(C), pages 2408-2420.
    9. Huang, Haozhong & Zhou, Chengzhong & Liu, Qingsheng & Wang, Qingxin & Wang, Xueqiang, 2016. "An experimental study on the combustion and emission characteristics of a diesel engine under low temperature combustion of diesel/gasoline/n-butanol blends," Applied Energy, Elsevier, vol. 170(C), pages 219-231.
    10. Nabi, M.N. & Rasul, M.G. & Rahman, S.M.A. & Dowell, Ashley & Ristovski, Z.D. & Brown, R.J., 2019. "Study of performance, combustion and emission characteristics of a common rail diesel engine with tea tree oil-diglyme blends," Energy, Elsevier, vol. 180(C), pages 216-228.
    11. Zhang, Quanchang & Yao, Mingfa & Zheng, Zunqing & Liu, Haifeng & Xu, Jia, 2012. "Experimental study of n-butanol addition on performance and emissions with diesel low temperature combustion," Energy, Elsevier, vol. 47(1), pages 515-521.
    12. Munir, Mamoona & Ahmad, Mushtaq & Saeed, Muhammad & Waseem, Amir & Rehan, Mohammad & Nizami, Abdul-Sattar & Zafar, Muhammad & Arshad, Muhammad & Sultana, Shazia, 2019. "Sustainable production of bioenergy from novel non-edible seed oil (Prunus cerasoides) using bimetallic impregnated montmorillonite clay catalyst," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 321-332.
    13. Lau, Pak-Chung & Kwong, Tsz-Lung & Yung, Ka-Fu, 2022. "Manganese glycerolate catalyzed simultaneous esterification and transesterification: The kinetic and mechanistic study, and application in biodiesel and bio-lubricants synthesis," Renewable Energy, Elsevier, vol. 189(C), pages 549-558.
    14. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    15. Theotokatos, Gerasimos & Guan, Cong & Chen, Hui & Lazakis, Iraklis, 2018. "Development of an extended mean value engine model for predicting the marine two-stroke engine operation at varying settings," Energy, Elsevier, vol. 143(C), pages 533-545.
    16. Abu-Ghazala, Abdelmoniem H. & Abdelhady, Hosam H. & Mazhar, Amina A. & El-Deab, Mohamed S., 2022. "Valorization of hazard waste: Efficient utilization of white brick waste powder in the catalytic production of biodiesel from waste cooking oil via RSM optimization process," Renewable Energy, Elsevier, vol. 200(C), pages 1120-1133.
    17. Savvas L. Douvartzides & Nikolaos D. Charisiou & Kyriakos N. Papageridis & Maria A. Goula, 2019. "Green Diesel: Biomass Feedstocks, Production Technologies, Catalytic Research, Fuel Properties and Performance in Compression Ignition Internal Combustion Engines," Energies, MDPI, vol. 12(5), pages 1-41, February.
    18. Severo, Ihana Aguiar & Siqueira, Stefania Fortes & Deprá, Mariany Costa & Maroneze, Mariana Manzoni & Zepka, Leila Queiroz & Jacob-Lopes, Eduardo, 2019. "Biodiesel facilities: What can we address to make biorefineries commercially competitive?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 686-705.
    19. Wang, Quan & Wenlei Xie, & Guo, Lihong, 2022. "Molybdenum and zirconium oxides supported on KIT-6 silica: A recyclable composite catalyst for one–pot biodiesel production from simulated low-quality oils," Renewable Energy, Elsevier, vol. 187(C), pages 907-922.
    20. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:280:y:2023:i:c:s0360544223016328. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.