IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v203y2020ics0951832020305585.html
   My bibliography  Save this article

Reliability analysis of flood defenses: The case of the Nezahualcoyotl dike in the aztec city of Tenochtitlan

Author

Listed:
  • Torres-Alves, Gina Alexandra
  • Morales-Nápoles, Oswaldo

Abstract

In some cases, hydraulic infrastructures of different sizes and importance are built without formal design criteria and it may be desired to infer the reliability level for which it was originally designed. In this paper, we present a method to perform the reliability analysis of a dike that was, in all likelihood, designed without probabilistic criteria. This is the Nezahualcoyotl dike, an ancient structure built by the Aztec empire around 1445 in modern-day Mexico City. The method consists of 1. Characterizing time-series of relevant environmental variables. We use precipitation and evaporation by combining a discrete time-state Markov chain with a copula-based stochastic process. 2. Simulating from the time series model a large number of observations to “load†the structure of interest and finally, 3. Compute the probability of failure of the structure with respect to a failure mechanism. In this case, we focus on overflow. The proposed model is able to reproduce to a good extent the hydrology of the system. The return period for overflow obtained in our research is consistent with historical accounts. This work can be used as a reference to assess the reliability of other (ancient or present-day) structures whose design is based on informal criteria.

Suggested Citation

  • Torres-Alves, Gina Alexandra & Morales-Nápoles, Oswaldo, 2020. "Reliability analysis of flood defenses: The case of the Nezahualcoyotl dike in the aztec city of Tenochtitlan," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
  • Handle: RePEc:eee:reensy:v:203:y:2020:i:c:s0951832020305585
    DOI: 10.1016/j.ress.2020.107057
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832020305585
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2020.107057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Muh Marfai & Andung Sekaranom & Philip Ward, 2015. "Community responses and adaptation strategies toward flood hazard in Jakarta, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 1127-1144, January.
    2. Genest, Christian & Rémillard, Bruno & Beaudoin, David, 2009. "Goodness-of-fit tests for copulas: A review and a power study," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 199-213, April.
    3. Acar, Elif F. & Czado, Claudia & Lysy, Martin, 2019. "Flexible dynamic vine copula models for multivariate time series data," Econometrics and Statistics, Elsevier, vol. 12(C), pages 181-197.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rongen, G. & Morales-Nápoles, O. & Kok, M., 2022. "Expert judgment-based reliability analysis of the Dutch flood defense system," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    2. Oliveira, Ricardo P. & Achcar, Jorge A. & Mazucheli, Josmar & Bertoli, Wesley, 2021. "A new class of bivariate Lindley distributions based on stress and shock models and some of their reliability properties," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    3. Fahad, Md Golam Rabbani & Nazari, Rouzbeh & Motamedi, M.H. & Karimi, Maryam, 2022. "A Decision-Making Framework Integrating Fluid and Solid Systems to Assess Resilience of Coastal Communities Experiencing Extreme Storm Events," Reliability Engineering and System Safety, Elsevier, vol. 221(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kajal Lahiri & Liu Yang, 2023. "Predicting binary outcomes based on the pair-copula construction," Empirical Economics, Springer, vol. 64(6), pages 3089-3119, June.
    2. Jie Huang & Haiming Zhou & Nader Ebrahimi, 2022. "Bayesian Bivariate Cure Rate Models Using Copula Functions," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 11(3), pages 1-9, May.
    3. Daniel Puig & Oswaldo Morales-Nápoles & Fatemeh Bakhtiari & Gissela Landa, 2017. "The accountability imperative for quantifiying the uncertainty of emission forecasts : evidence from Mexico," Working Papers hal-03389325, HAL.
    4. Richard C. Bradley & Richard A. Davis & Dimitris N. Politis, 2021. "Preface to the Murray Rosenblatt memorial special issue of JTSA," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(5-6), pages 495-498, September.
    5. Bedoui, Rihab & Braiek, Sana & Guesmi, Khaled & Chevallier, Julien, 2019. "On the conditional dependence structure between oil, gold and USD exchange rates: Nested copula based GJR-GARCH model," Energy Economics, Elsevier, vol. 80(C), pages 876-889.
    6. Gaißer, Sandra & Schmid, Friedrich, 2010. "On testing equality of pairwise rank correlations in a multivariate random vector," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2598-2615, November.
    7. Melese Mulu Baylie & Csaba Fogarassy, 2022. "Decision Analysis of the Adaptation of Households to Extreme Floods Using an Extended Protection Motivation Framework—A Case Study from Ethiopia," Land, MDPI, vol. 11(10), pages 1-20, October.
    8. Righi, Marcelo Brutti & Ceretta, Paulo Sergio, 2013. "Estimating non-linear serial and cross-interdependence between financial assets," Journal of Banking & Finance, Elsevier, vol. 37(3), pages 837-846.
    9. Wu, Shaomin, 2014. "Construction of asymmetric copulas and its application in two-dimensional reliability modelling," European Journal of Operational Research, Elsevier, vol. 238(2), pages 476-485.
    10. Katarzyna Baran-Gurgul, 2022. "The Risk of Extreme Streamflow Drought in the Polish Carpathians—A Two-Dimensional Approach," IJERPH, MDPI, vol. 19(21), pages 1-27, October.
    11. Luca Riccetti, 2013. "A copula–GARCH model for macro asset allocation of a portfolio with commodities," Empirical Economics, Springer, vol. 44(3), pages 1315-1336, June.
    12. Daniel Puig & Oswaldo Morales-Nápoles & Fatemeh Bakhtiari & Gissela Landa, 2017. "The accountability imperative for quantifiying the uncertainty of emission forecasts : evidence from Mexico," SciencePo Working papers Main hal-03389325, HAL.
    13. Michał Adam & Piotr Bańbuła & Michał Markun, 2013. "Dependence and contagion between asset prices in Poland and abroad. A copula approach," NBP Working Papers 169, Narodowy Bank Polski.
    14. Marc Gronwald & Janina Ketterer & Stefan Trück, 2011. "The Dependence Structure between Carbon Emission Allowances and Financial Markets - A Copula Analysis," CESifo Working Paper Series 3418, CESifo.
    15. Ahmed, Osama & Serra, Teresa, 2015. "Evaluate the economic consequences of revenue insurance programs in Spain using copula models. The case of orange and apple," 2015 Conference, August 9-14, 2015, Milan, Italy 212522, International Association of Agricultural Economists.
    16. Dominik Paprotny, 2021. "Convergence Between Developed and Developing Countries: A Centennial Perspective," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 153(1), pages 193-225, January.
    17. Wanling Huang & Artem Prokhorov, 2014. "A Goodness-of-fit Test for Copulas," Econometric Reviews, Taylor & Francis Journals, vol. 33(7), pages 751-771, October.
    18. Rašiová, Barbara & Árendáš, Peter, 2023. "Copula approach to market volatility and technology stocks dependence," Finance Research Letters, Elsevier, vol. 52(C).
    19. Kleinow, Jacob & Moreira, Fernando, 2016. "Systemic risk among European banks: A copula approach," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 42(C), pages 27-42.
    20. Xun Lu & Kin Lai & Liang Liang, 2014. "Portfolio value-at-risk estimation in energy futures markets with time-varying copula-GARCH model," Annals of Operations Research, Springer, vol. 219(1), pages 333-357, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:203:y:2020:i:c:s0951832020305585. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.