IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v113y2016icp12-27.html
   My bibliography  Save this article

Estimates of global REE recycling potentials from NdFeB magnet material

Author

Listed:
  • Schulze, Rita
  • Buchert, Matthias

Abstract

Rare earth element (REE) containing neodymium-iron-boron (NdFeB) magnets play a major role in green technologies, including motor and generator applications. Recycling of REE from NdFeB magnets is expected to be beneficial from an environmental point of view compared to the production of magnets using primary REE currently practiced. This study gives a broad overview of global recycling potentials from end-of-life magnets from eleven different application groups and industrial scrap, quantified through dynamic material flow analysis. Data was obtained through a review of the literature, complemented by expert estimations. Recycling potentials achievable for REEs used in NdFeB magnets, namely neodymium (Nd), praseodymium (Pr), terbium (Tb) and dysprosium (Dy), were calculated for years 2020–2030, derived from two demand scenarios to reflect uncertainties in historic NdFeB demand figures and future demand development, taking into account the recent success in heavy REE reduction efforts. The most important NdFeB application groups in terms of recycling potentials are identified. The modelled scenarios show that between 18 and 22 percent of global light REE (Nd and Pr) and 20–23 percent of heavy (Dy and Tb) REE demand for use in NdFeB magnet production can be met by supply from secondary sources from end-of-life magnets and industrial scrap in years 2020, 25 and 30 (ranges of values for individual years and scenarios).

Suggested Citation

  • Schulze, Rita & Buchert, Matthias, 2016. "Estimates of global REE recycling potentials from NdFeB magnet material," Resources, Conservation & Recycling, Elsevier, vol. 113(C), pages 12-27.
  • Handle: RePEc:eee:recore:v:113:y:2016:i:c:p:12-27
    DOI: 10.1016/j.resconrec.2016.05.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344916301148
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2016.05.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chancerel, Perrine & Marwede, Max & Nissen, Nils F. & Lang, Klaus-Dieter, 2015. "Estimating the quantities of critical metals embedded in ICT and consumer equipment," Resources, Conservation & Recycling, Elsevier, vol. 98(C), pages 9-18.
    2. Smith Stegen, Karen, 2015. "Heavy rare earths, permanent magnets, and renewable energies: An imminent crisis," Energy Policy, Elsevier, vol. 79(C), pages 1-8.
    3. Machacek, Erika & Richter, Jessika Luth & Habib, Komal & Klossek, Polina, 2015. "Recycling of rare earths from fluorescent lamps: Value analysis of closing-the-loop under demand and supply uncertainties," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 76-93.
    4. Xiaoyue Du & T. E. Graedel, 2011. "Global Rare Earth In‐Use Stocks in NdFeB Permanent Magnets," Journal of Industrial Ecology, Yale University, vol. 15(6), pages 836-843, December.
    5. Greenfield, Aaron & Graedel, T.E., 2013. "The omnivorous diet of modern technology," Resources, Conservation & Recycling, Elsevier, vol. 74(C), pages 1-7.
    6. Paul Waide & Conrad U. Brunner, 2011. "Energy-Efficiency Policy Opportunities for Electric Motor-Driven Systems," IEA Energy Papers 2011/7, OECD Publishing.
    7. Seo, Yuna & Morimoto, Shinichirou, 2014. "Comparison of dysprosium security strategies in Japan for 2010–2030," Resources Policy, Elsevier, vol. 39(C), pages 15-20.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:hal:wpaper:halshs-04126172 is not listed on IDEAS
    2. Xiao, Shijiang & Geng, Yong & Rui, Xue & Su, Chang & Yao, Tianli, 2022. "Behind of the criticality for rare earth elements: Surplus of China’s yttrium," Resources Policy, Elsevier, vol. 76(C).
    3. Li, Yizhou & Wang, Yibo & Ge, Jianping, 2023. "Tracing the material flows of dysprosium in China from 2010 to 2020: An investigation of the partition characteristics of different rare earth mining areas," Resources Policy, Elsevier, vol. 85(PB).
    4. Jingxuan Geng & Han Hao & Xin Sun & Dengye Xun & Zongwei Liu & Fuquan Zhao, 2021. "Static material flow analysis of neodymium in China," Journal of Industrial Ecology, Yale University, vol. 25(1), pages 114-124, February.
    5. Ajay B. Patil & Rudolf P. W. J. Struis & Christian Ludwig, 2023. "Opportunities in Critical Rare Earth Metal Recycling Value Chains for Economic Growth with Sustainable Technological Innovations," Circular Economy and Sustainability, Springer, vol. 3(2), pages 1127-1140, June.
    6. Teixeira, Bernardo & Brito, Miguel Centeno & Mateus, António, 2024. "Raw materials for the Portuguese decarbonization roadmap: The case of solar photovoltaics and wind energy," Resources Policy, Elsevier, vol. 90(C).
    7. Depraiter, Lisa & Goutte, Stephane, 2023. "The role and challenges of rare earths in the energy transition," Resources Policy, Elsevier, vol. 86(PB).
    8. Xiao, Shijiang & Geng, Yong & Rui, Xue & Gao, Ziyan & Su, Chang & Yao, Tianli & Zhong, Chen, 2024. "Anthropogenic cycles of praseodymium in China: 2000–2020," Resources Policy, Elsevier, vol. 92(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vahidi, Ehsan & Navarro, Julio & Zhao, Fu, 2016. "An initial life cycle assessment of rare earth oxides production from ion-adsorption clays," Resources, Conservation & Recycling, Elsevier, vol. 113(C), pages 1-11.
    2. Gao, Cuixia & Xu, Yufei & Geng, Yong & Xiao, Shijiang, 2022. "Uncovering terbium metabolism in China: A dynamic material flow analysis," Resources Policy, Elsevier, vol. 79(C).
    3. Schmid, Marc, 2019. "Mitigating supply risks through involvement in rare earth projects: Japan's strategies and what the US can learn," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    4. Bortoni, Edson C. & Magalhães, Leonardo P. & Nogueira, Luiz A.H. & Bajay, Sérgio V. & Cassula, Agnelo M., 2020. "An assessment of energy efficient motors application by scenarios evaluation," Energy Policy, Elsevier, vol. 140(C).
    5. Ren, Kaipeng & Tang, Xu & Wang, Peng & Willerström, Jakob & Höök, Mikael, 2021. "Bridging energy and metal sustainability: Insights from China’s wind power development up to 2050," Energy, Elsevier, vol. 227(C).
    6. Sauer, Ildo L. & Tatizawa, Hédio & Salotti, Francisco A.M. & Mercedes, Sonia S., 2015. "A comparative assessment of Brazilian electric motors performance with minimum efficiency standards," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 308-318.
    7. Fernández Oro, J.M. & Barrio Perotti, R. & Galdo Vega, M. & González, J., 2023. "Effect of the radial gap size on the deterministic flow in a centrifugal pump due to impeller-tongue interactions," Energy, Elsevier, vol. 278(PA).
    8. Sousa Santos, Vladimir & Cabello Eras, Juan J. & Cabello Ulloa, Mario J., 2024. "Evaluation of the energy saving potential in electric motors applying a load-based voltage control method," Energy, Elsevier, vol. 303(C).
    9. Ge, Jianping & Lei, Yalin, 2018. "Resource tax on rare earths in China: Policy evolution and market responses," Resources Policy, Elsevier, vol. 59(C), pages 291-297.
    10. Packey, Daniel J. & Kingsnorth, Dudley, 2016. "The impact of unregulated ionic clay rare earth mining in China," Resources Policy, Elsevier, vol. 48(C), pages 112-116.
    11. de Almeida, Anibal T. & Fong, Joao & Falkner, Hugh & Bertoldi, Paolo, 2017. "Policy options to promote energy efficient electric motors and drives in the EU," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1275-1286.
    12. Zi-Qiang Zhu & Dawei Liang, 2022. "Perspective of Thermal Analysis and Management for Permanent Magnet Machines, with Particular Reference to Hotspot Temperatures," Energies, MDPI, vol. 15(21), pages 1-51, November.
    13. Chenghao Lai & Xiuli Wang & Hengkai Li & Yanbing Zhou, 2024. "Unleashing the Power of Closed-Loop Supply Chains: A Stackelberg Game Analysis of Rare Earth Resources Recycling," Sustainability, MDPI, vol. 16(12), pages 1-23, June.
    14. Anibal T. de Almeida & Fernando J. T. E. Ferreira & João Fong, 2023. "Perspectives on Electric Motor Market Transformation for a Net Zero Carbon Economy," Energies, MDPI, vol. 16(3), pages 1-16, January.
    15. Chen, Yufeng & Zheng, Biao & Qu, Fang, 2020. "Modeling the nexus of crude oil, new energy and rare earth in China: An asymmetric VAR-BEKK (DCC)-GARCH approach," Resources Policy, Elsevier, vol. 65(C).
    16. Christoph Sejkora & Lisa Kühberger & Fabian Radner & Alexander Trattner & Thomas Kienberger, 2020. "Exergy as Criteria for Efficient Energy Systems—A Spatially Resolved Comparison of the Current Exergy Consumption, the Current Useful Exergy Demand and Renewable Exergy Potential," Energies, MDPI, vol. 13(4), pages 1-51, February.
    17. Riddle, Matthew & Macal, Charles M. & Conzelmann, Guenter & Combs, Todd E. & Bauer, Diana & Fields, Fletcher, 2015. "Global critical materials markets: An agent-based modeling approach," Resources Policy, Elsevier, vol. 45(C), pages 307-321.
    18. Cox, Emily, 2018. "Assessing long-term energy security: The case of electricity in the United Kingdom," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2287-2299.
    19. André Månberger, 2021. "Reduced Use of Fossil Fuels can Reduce Supply of Critical Resources," Biophysical Economics and Resource Quality, Springer, vol. 6(2), pages 1-15, June.
    20. Taylor, Josh A. & Dhople, Sairaj V. & Callaway, Duncan S., 2016. "Power systems without fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1322-1336.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:113:y:2016:i:c:p:12-27. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.