IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i21p8189-d961559.html
   My bibliography  Save this article

Perspective of Thermal Analysis and Management for Permanent Magnet Machines, with Particular Reference to Hotspot Temperatures

Author

Listed:
  • Zi-Qiang Zhu

    (Department of Electronic and Electrical Engineering, The University of Sheffield, Sheffield S1 3JD, UK)

  • Dawei Liang

    (Department of Electronic and Electrical Engineering, The University of Sheffield, Sheffield S1 3JD, UK)

Abstract

Permanent magnet (PM) machines have been extensively used for various applications. Nevertheless, thermal effect, particularly hotspot temperature, not only severely restricts power/torque density but also leads to deteriorations in electromagnetic performance, service life, and reliability. Starting with foundations of PM machines and heat transfer mechanisms, this paper reviews the development of thermal analysis methods over the last thirty years and the state-of-the-art research achievements, and the hotspot temperatures of winding and PM are particularly evaluated. In the overview, various machine losses and cooling techniques are first introduced, which are the essential reasons for temperature rise and the most straightforward way to remove the generated heat. Afterwards, the mainstream thermal analysis techniques, i.e., numerical techniques, lumped-parameter thermal model, and hybrid thermal models, as well as the online electrical parameter-based and thermal model-based temperature monitoring techniques, are reviewed and assessed in depth. In addition, this paper also reviews the analytical thermal modelling methods for winding and PM. Finally, future research trends are highlighted.

Suggested Citation

  • Zi-Qiang Zhu & Dawei Liang, 2022. "Perspective of Thermal Analysis and Management for Permanent Magnet Machines, with Particular Reference to Hotspot Temperatures," Energies, MDPI, vol. 15(21), pages 1-51, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8189-:d:961559
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/21/8189/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/21/8189/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qingsong Wang & Yu Wu & Shuangxia Niu & Xing Zhao, 2022. "Advances in Thermal Management Technologies of Electrical Machines," Energies, MDPI, vol. 15(9), pages 1-17, April.
    2. Qixu Chen & Dechen Wu & Guoli Li & Wenping Cao & Zhe Qian & Qunjing Wang, 2021. "Development of a Fast Thermal Model for Calculating the Temperature of the Interior PMSM," Energies, MDPI, vol. 14(22), pages 1-17, November.
    3. Paul Waide & Conrad U. Brunner, 2011. "Energy-Efficiency Policy Opportunities for Electric Motor-Driven Systems," IEA Energy Papers 2011/7, OECD Publishing.
    4. David C. Deisenroth & Michael Ohadi, 2019. "Thermal Management of High-Power Density Electric Motors for Electrification of Aviation and Beyond," Energies, MDPI, vol. 12(19), pages 1-18, September.
    5. Petrica Taras & Reza Nilifard & Zi-Qiang Zhu & Ziad Azar, 2022. "Cooling Techniques in Direct-Drive Generators for Wind Power Application," Energies, MDPI, vol. 15(16), pages 1-29, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bortoni, Edson C. & Magalhães, Leonardo P. & Nogueira, Luiz A.H. & Bajay, Sérgio V. & Cassula, Agnelo M., 2020. "An assessment of energy efficient motors application by scenarios evaluation," Energy Policy, Elsevier, vol. 140(C).
    2. Farid Khazaeli Moghadam & Nils Desch, 2023. "Life Cycle Assessment of Various PMSG-Based Drivetrain Concepts for 15 MW Offshore Wind Turbines Applications," Energies, MDPI, vol. 16(3), pages 1-26, February.
    3. Christoph Sejkora & Lisa Kühberger & Fabian Radner & Alexander Trattner & Thomas Kienberger, 2020. "Exergy as Criteria for Efficient Energy Systems—A Spatially Resolved Comparison of the Current Exergy Consumption, the Current Useful Exergy Demand and Renewable Exergy Potential," Energies, MDPI, vol. 13(4), pages 1-51, February.
    4. Diego Troncon & Luigi Alberti, 2020. "Case of Study of the Electrification of a Tractor: Electric Motor Performance Requirements and Design," Energies, MDPI, vol. 13(9), pages 1-15, May.
    5. Taylor, Josh A. & Dhople, Sairaj V. & Callaway, Duncan S., 2016. "Power systems without fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1322-1336.
    6. Oğuz Mısır & Mehmet Akar, 2022. "Efficiency and Core Loss Map Estimation with Machine Learning Based Multivariate Polynomial Regression Model," Mathematics, MDPI, vol. 10(19), pages 1-18, October.
    7. F. Knobloch & J. -F. Mercure, 2016. "The behavioural aspect of green technology investments: a general positive model in the context of heterogeneous agents," Papers 1603.06888, arXiv.org.
    8. Paramonova, Svetlana & Thollander, Patrik & Ottosson, Mikael, 2015. "Quantifying the extended energy efficiency gap-evidence from Swedish electricity-intensive industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 472-483.
    9. Gang Lei & Jianguo Zhu & Youguang Guo & Chengcheng Liu & Bo Ma, 2017. "A Review of Design Optimization Methods for Electrical Machines," Energies, MDPI, vol. 10(12), pages 1-31, November.
    10. Hosain, Md Lokman & Bel Fdhila, Rebei & Rönnberg, Kristian, 2017. "Taylor-Couette flow and transient heat transfer inside the annulus air-gap of rotating electrical machines," Applied Energy, Elsevier, vol. 207(C), pages 624-633.
    11. Schulze, Rita & Buchert, Matthias, 2016. "Estimates of global REE recycling potentials from NdFeB magnet material," Resources, Conservation & Recycling, Elsevier, vol. 113(C), pages 12-27.
    12. Guo, Jingquan & Ma, Xinqiang & Ahmadpour, Ali, 2021. "Electrical–mechanical evaluation of the multi–cascaded induction motors under different conditions," Energy, Elsevier, vol. 229(C).
    13. Julio R. Gómez & Enrique C. Quispe & Rosaura del Pilar Castrillón & Percy R. Viego, 2020. "Identification of Technoeconomic Opportunities with the Use of Premium Efficiency Motors as Alternative for Developing Countries," Energies, MDPI, vol. 13(20), pages 1-16, October.
    14. Zuberi, M. Jibran S. & Bless, Frédéric & Chambers, Jonathan & Arpagaus, Cordin & Bertsch, Stefan S. & Patel, Martin K., 2018. "Excess heat recovery: An invisible energy resource for the Swiss industry sector," Applied Energy, Elsevier, vol. 228(C), pages 390-408.
    15. Marcin Jastrzębski & Jacek Kabziński, 2021. "Approximation of Permanent Magnet Motor Flux Distribution by Partially Informed Neural Networks," Energies, MDPI, vol. 14(18), pages 1-21, September.
    16. Backlund, Sandra & Thollander, Patrik & Palm, Jenny & Ottosson, Mikael, 2012. "Extending the energy efficiency gap," Energy Policy, Elsevier, vol. 51(C), pages 392-396.
    17. Martin Neil Baily & James Manyika & Shalabh Gupta, 2013. "U.S. Productivity Growth: An Optimistic Perspective," International Productivity Monitor, Centre for the Study of Living Standards, vol. 25, pages 3-12, Spring.
    18. António da Silva Gonçalves, Vítor & Mil-Homens dos Santos, Feliz José, 2019. "Energy management system ISO 50001:2011 and energy management for sustainable development," Energy Policy, Elsevier, vol. 133(C).
    19. Jan Hoffmann & Wolf-Rüdiger Canders & Markus Henke, 2020. "Impact of Current Density and Cooling on the Weight Balance of Electrical Propulsion Drives for Aviation," Energies, MDPI, vol. 13(22), pages 1-22, November.
    20. Małgorzata Jastrzębska, 2022. "Installation’s Conception in the Field of Renewable Energy Sources for the Needs of the Silesian Botanical Garden," Energies, MDPI, vol. 15(18), pages 1-28, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8189-:d:961559. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.