IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v39y2014icp15-20.html
   My bibliography  Save this article

Comparison of dysprosium security strategies in Japan for 2010–2030

Author

Listed:
  • Seo, Yuna
  • Morimoto, Shinichirou

Abstract

Dysprosium (Dy) is a strategic rare-earth element with many uses in modern technology and an extremely limited supply. We compared the effectiveness of two different strategies for reducing total demand for Dy in Japan during the period 2010–2030: development of low-Dy REE (NdFeB) magnets and a program to promote recycling of REE magnets. First we performed a substance flow analysis based on a bottom-up estimation of the Dy inventory in Japan. This enabled us to construct a data set for the forecasts of future demand that could be used to model the outcome of strategies for Dy demand at each stage of Dy flow. For the low-Dy magnet development scenario, the reduction in the proportion of Dy in NdFeB magnets ranged from 0.8% to 5% in end-use products. On that of recycling promotion, recycling rates of end-use products ranged from 5% to 30% over the years. A baseline forecast of Dy demand was made using historical data. We found that the strategy of low-Dy magnet development would be much more effective in reducing Dy demand than recycling promotion.

Suggested Citation

  • Seo, Yuna & Morimoto, Shinichirou, 2014. "Comparison of dysprosium security strategies in Japan for 2010–2030," Resources Policy, Elsevier, vol. 39(C), pages 15-20.
  • Handle: RePEc:eee:jrpoli:v:39:y:2014:i:c:p:15-20
    DOI: 10.1016/j.resourpol.2013.10.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420713000883
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2013.10.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Spatari, S. & Bertram, M. & Gordon, Robert B. & Henderson, K. & Graedel, T.E., 2005. "Twentieth century copper stocks and flows in North America: A dynamic analysis," Ecological Economics, Elsevier, vol. 54(1), pages 37-51, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Kuangyuan & Kleit, Andrew N. & Nieto, Antonio, 2017. "An economics strategy for criticality – Application to rare earth element Yttrium in new lighting technology and its sustainable availability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 899-915.
    2. Li, Yizhou & Wang, Yibo & Ge, Jianping, 2023. "Tracing the material flows of dysprosium in China from 2010 to 2020: An investigation of the partition characteristics of different rare earth mining areas," Resources Policy, Elsevier, vol. 85(PB).
    3. Elshkaki, Ayman & Graedel, T.E., 2014. "Dysprosium, the balance problem, and wind power technology," Applied Energy, Elsevier, vol. 136(C), pages 548-559.
    4. Shigetomi, Yosuke & Nansai, Keisuke & Kagawa, Shigemi & Kondo, Yasushi & Tohno, Susumu, 2017. "Economic and social determinants of global physical flows of critical metals," Resources Policy, Elsevier, vol. 52(C), pages 107-113.
    5. Kim, Juhan & Lee, Jungbae & Kim, BumChoong & Kim, Jinsoo, 2019. "Raw material criticality assessment with weighted indicators: An application of fuzzy analytic hierarchy process," Resources Policy, Elsevier, vol. 60(C), pages 225-233.
    6. Hatayama, Hiroki & Tahara, Kiyotaka, 2015. "Evaluating the sufficiency of Japan׳s mineral resource entitlements for supply risk mitigation," Resources Policy, Elsevier, vol. 44(C), pages 72-80.
    7. Schulze, Rita & Buchert, Matthias, 2016. "Estimates of global REE recycling potentials from NdFeB magnet material," Resources, Conservation & Recycling, Elsevier, vol. 113(C), pages 12-27.
    8. Riddle, Matthew & Macal, Charles M. & Conzelmann, Guenter & Combs, Todd E. & Bauer, Diana & Fields, Fletcher, 2015. "Global critical materials markets: An agent-based modeling approach," Resources Policy, Elsevier, vol. 45(C), pages 307-321.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Larona S. Teseletso & Tsuyoshi Adachi, 2022. "Long-Term Sustainability of Copper and Iron Based on a System Dynamics Model," Resources, MDPI, vol. 11(4), pages 1-19, April.
    2. Chen, Wei-Qiang & Graedel, T.E., 2012. "Dynamic analysis of aluminum stocks and flows in the United States: 1900–2009," Ecological Economics, Elsevier, vol. 81(C), pages 92-102.
    3. Watson, Bryan C & Morris, Zack B & Weissburg, Marc & Bras, Bert, 2023. "System of system design-for-resilience heuristics derived from forestry case study variants," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    4. B. Muller, Daniel, 2006. "Stock dynamics for forecasting material flows--Case study for housing in The Netherlands," Ecological Economics, Elsevier, vol. 59(1), pages 142-156, August.
    5. Eckelman, Matthew J. & Daigo, Ichiro, 2008. "Markov chain modeling of the global technological lifetime of copper," Ecological Economics, Elsevier, vol. 67(2), pages 265-273, September.
    6. Luca Ciacci & Ivano Vassura & Fabrizio Passarini, 2017. "Urban Mines of Copper: Size and Potential for Recycling in the EU," Resources, MDPI, vol. 6(1), pages 1-14, January.
    7. Ciacci, Luca & Chen, Weiqiang & Passarini, Fabrizio & Eckelman, Matthew & Vassura, Ivano & Morselli, Luciano, 2013. "Historical evolution of anthropogenic aluminum stocks and flows in Italy," Resources, Conservation & Recycling, Elsevier, vol. 72(C), pages 1-8.
    8. Hoarau, Quentin & Lorang, Etienne, 2022. "An assessment of the European regulation on battery recycling for electric vehicles," Energy Policy, Elsevier, vol. 162(C).
    9. Zhou, Yucheng & Yang, Ning & Hu, Shanying, 2013. "Industrial metabolism of PVC in China: A dynamic material flow analysis," Resources, Conservation & Recycling, Elsevier, vol. 73(C), pages 33-40.
    10. Song, Yi & Cheng, Jinhua & Zhang, Yijun & Dai, Tao & Huang, Jianbai, 2021. "Direct and indirect effects of heterogeneous technical change on metal consumption intensity: Evidence from G7 and BRICS countries," Resources Policy, Elsevier, vol. 71(C).
    11. Yan, Lingyu & Wang, Anjian & Chen, Qishen & Li, Jianwu, 2013. "Dynamic material flow analysis of zinc resources in China," Resources, Conservation & Recycling, Elsevier, vol. 75(C), pages 23-31.
    12. Jan Streeck & Stefan Pauliuk & Hanspeter Wieland & Dominik Wiedenhofer, 2023. "A review of methods to trace material flows into final products in dynamic material flow analysis: From industry shipments in physical units to monetary input–output tables, Part 1," Journal of Industrial Ecology, Yale University, vol. 27(2), pages 436-456, April.
    13. Gondia Sokhna Seck & Emmanuel Hache & Clement Bonnet & Marine Simoën & Samuel Carcanague, 2020. "Copper at the crossroads : Assessment of the interactions between low-carbon energy transition and supply limitations," Post-Print hal-03118509, HAL.
    14. Daigo, Ichiro & Matsuno, Yasunari & Adachi, Yoshihiro, 2010. "Substance flow analysis of chromium and nickel in the material flow of stainless steel in Japan," Resources, Conservation & Recycling, Elsevier, vol. 54(11), pages 851-863.
    15. Cha, Kyounghoon & Son, Minjung & Matsuno, Yasunari & Fthenakis, Vasilis & Hur, Tak, 2013. "Substance flow analysis of cadmium in Korea," Resources, Conservation & Recycling, Elsevier, vol. 71(C), pages 31-39.
    16. Cao, Zhi & Shen, Lei & Liu, Litao & Zhao, Jianan & Zhong, Shuai & Kong, Hanxiao & Sun, Yanzhi, 2017. "Estimating the in-use cement stock in China: 1920–2013," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 21-31.
    17. Ling Zhang & Zengwei Yuan & Jun Bi, 2012. "Estimation of Copper In‐use Stocks in Nanjing, China," Journal of Industrial Ecology, Yale University, vol. 16(2), pages 191-202, April.
    18. Wang, Minxi & Chen, Wu & Zhou, Yang & Li, Xin, 2017. "Assessment of potential copper scrap in China and policy recommendation," Resources Policy, Elsevier, vol. 52(C), pages 235-244.
    19. Recalde, Korinti & Wang, Jinlong & Graedel, T.E., 2008. "Aluminium in-use stocks in the state of Connecticut," Resources, Conservation & Recycling, Elsevier, vol. 52(11), pages 1271-1282.
    20. Daigo, Ichiro & Hashimoto, Susumu & Matsuno, Yasunari & Adachi, Yoshihiro, 2009. "Material stocks and flows accounting for copper and copper-based alloys in Japan," Resources, Conservation & Recycling, Elsevier, vol. 53(4), pages 208-217.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:39:y:2014:i:c:p:15-20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.