IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v272y2024ics0925527324001051.html
   My bibliography  Save this article

Overcoming the semantic gap in the customer-to-manufacturer (C2M) platform: A soft prompts-based approach with pretrained language models

Author

Listed:
  • Huang, Jianhui
  • Wang, Yue
  • Ng, Stephen C.H.
  • Tsung, Fugee

Abstract

Customer-to-Manufacturer (C2M) is a strategy in smart manufacturing where customers collaborate with manufacturers for customized product development on an online platform. The platform enables the shift from the traditional manufacturing process, which is driven by research and marketing, toward a customer-centric product development process. However, a challenge arises as customers lack technical knowledge to communicate their product specifications effectively, creating a semantic gap. This paper proposes a soft prompt-based network structure that utilizes pretrained language models to bridge the semantic gap on the C2M platform. To address limited customer needs data and imbalanced classes, a large corpus of product review texts is used to establish a mapping between reviews and product specifications. A smaller set of customer needs text is then employed to adapt this mapping to the target customer needs-product specifications relationship, thereby closing the semantic gap. The experimental results demonstrate the effectiveness of the proposed model adaptation operation and the prompting structure. Additionally, the experiments highlight the robustness of the proposed method against variations in training data size, thereby mitigating the challenges posed by imbalanced classes. The proposed method could potentially bring innovation to product customization and C2M platform development. By bridging the semantic gap, companies can better integrate customers in the co-design process and effectively translate customer needs into actionable product specifications.

Suggested Citation

  • Huang, Jianhui & Wang, Yue & Ng, Stephen C.H. & Tsung, Fugee, 2024. "Overcoming the semantic gap in the customer-to-manufacturer (C2M) platform: A soft prompts-based approach with pretrained language models," International Journal of Production Economics, Elsevier, vol. 272(C).
  • Handle: RePEc:eee:proeco:v:272:y:2024:i:c:s0925527324001051
    DOI: 10.1016/j.ijpe.2024.109248
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527324001051
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2024.109248?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Artem Timoshenko & John R. Hauser, 2019. "Identifying Customer Needs from User-Generated Content," Marketing Science, INFORMS, vol. 38(1), pages 1-20, January.
    2. Ho‐Yin Mak & Zuo‐Jun Max Shen, 2021. "When Triple‐A Supply Chains Meet Digitalization: The Case of JD.com's C2M Model," Production and Operations Management, Production and Operations Management Society, vol. 30(3), pages 656-665, March.
    3. Taylor Randall & Christian Terwiesch & Karl T. Ulrich, 2007. "Research Note—User Design of Customized Products," Marketing Science, INFORMS, vol. 26(2), pages 268-280, 03-04.
    4. Yue Wang & Xiang Li & Linda L. Zhang & Daniel Mo, 2022. "Configuring products with natural language: a simple yet effective approach based on text embeddings and multilayer perceptron," International Journal of Production Research, Taylor & Francis Journals, vol. 60(17), pages 5394-5406, September.
    5. Yingfen Zhou & Ming Xu & Rong Di, 2016. "Research on the Radical Innovation of C2M Business Model—A Case Study on Redcollar MTM Men’s Suits in China," International Journal of Business and Management, Canadian Center of Science and Education, vol. 11(4), pages 194-194, March.
    6. Lyu, Gaoyan & Hu, Huaqing & Zhuang, Guomian & Xi, Chenyang, 2023. "C2M strategies on an e-commerce platform under brand competition," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    7. He, Bo & Mirchandani, Prakash & Yang, Guang, 2023. "Offering custom products using a C2M model: Collaborating with an E-commerce platform," International Journal of Production Economics, Elsevier, vol. 262(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ladi Daodu & Prof. Dr. Amiya Bhaumik, 2024. "Impacts of Innovation and Business Analytics on the Performance of the Service Sector in Nigeria," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 8(6), pages 77-91, June.
    2. Fay, Scott & Mitra, Deb & Wang, Qiong, 2009. "Ask or infer? Strategic implications of alternative learning approaches in customization," International Journal of Research in Marketing, Elsevier, vol. 26(2), pages 136-152.
    3. Jiyeon Hong & Paul R. Hoban, 2022. "Writing More Compelling Creative Appeals: A Deep Learning-Based Approach," Marketing Science, INFORMS, vol. 41(5), pages 941-965, September.
    4. Youn Kang & Won Lee, 2015. "Self-customization of online service environments by users and its effect on their continuance intention," Service Business, Springer;Pan-Pacific Business Association, vol. 9(2), pages 321-342, June.
    5. Nikolaus Franke & Martin Schreier & Ulrike Kaiser, 2010. "The "I Designed It Myself" Effect in Mass Customization," Management Science, INFORMS, vol. 56(1), pages 125-140, January.
    6. Ayd{i}n Alptekinou{g}lu & Charles J. Corbett, 2008. "Mass Customization vs. Mass Production: Variety and Price Competition," Manufacturing & Service Operations Management, INFORMS, vol. 10(2), pages 204-217, August.
    7. Carlson, Keith & Kopalle, Praveen K. & Riddell, Allen & Rockmore, Daniel & Vana, Prasad, 2023. "Complementing human effort in online reviews: A deep learning approach to automatic content generation and review synthesis," International Journal of Research in Marketing, Elsevier, vol. 40(1), pages 54-74.
    8. Teichmann, Karin & Scholl-Grissemann, Ursula & Stokburger-Sauer, Nicola E., 2016. "The Power of Codesign to Bond Customers to Products and Companies: The Role of Toolkit Support and Creativity," Journal of Interactive Marketing, Elsevier, vol. 36(C), pages 15-30.
    9. Sahi, Gurjeet Kaur & Devi, Rita & Gupta, Mahesh C. & Cheng, T.C.E., 2022. "Assessing co-creation based competitive advantage through consumers’ need for differentiation," Journal of Retailing and Consumer Services, Elsevier, vol. 66(C).
    10. von Hippel, Eric & Kaulartz, Sandro, 2021. "Next-generation consumer innovation search: Identifying early-stage need-solution pairs on the web," Research Policy, Elsevier, vol. 50(8).
    11. Oetzel, Sebastian & Graf, Denise, 2023. "Fragen oder Zuhören? Ein Vergleich von Kundenbefragungen und User Generated Content," PraxisWISSEN Marketing: German Journal of Marketing, AfM – Arbeitsgemeinschaft für Marketing, vol. 8(01/2023), pages 91-107.
    12. Christian Hildebrand & Gerald Häubl & Andreas Herrmann & Jan R. Landwehr, 2013. "When Social Media Can Be Bad for You: Community Feedback Stifles Consumer Creativity and Reduces Satisfaction with Self-Designed Products," Information Systems Research, INFORMS, vol. 24(1), pages 14-29, March.
    13. Davide Proserpio & John R. Hauser & Xiao Liu & Tomomichi Amano & Alex Burnap & Tong Guo & Dokyun (DK) Lee & Randall Lewis & Kanishka Misra & Eric Schwarz & Artem Timoshenko & Lilei Xu & Hema Yoganaras, 2020. "Soul and machine (learning)," Marketing Letters, Springer, vol. 31(4), pages 393-404, December.
    14. Linda Zhang & Carman K.M. Lee & Pervaiz Akhtar, 2020. "Towards customization: Evaluation of integrated sales, product, and production configuration," Post-Print hal-03276827, HAL.
    15. Manis, K.T. & Madhavaram, Sreedhar, 2023. "AI-Enabled marketing capabilities and the hierarchy of capabilities: Conceptualization, proposition development, and research avenues," Journal of Business Research, Elsevier, vol. 157(C).
    16. Fei Li & Yang Zhao & Jaime Ortiz & Yan Chen, 2023. "How Does Digital Technology Innovation Affect the Internationalization Performance of Chinese Enterprises? The Moderating Effect of Sustainability Readiness," Sustainability, MDPI, vol. 15(14), pages 1-25, July.
    17. Morimura, Fumikazu & Sakagawa, Yuji, 2023. "The intermediating role of big data analytics capability between responsive and proactive market orientations and firm performance in the retail industry," Journal of Retailing and Consumer Services, Elsevier, vol. 71(C).
    18. David A. Schweidel & Yakov Bart & J. Jeffrey Inman & Andrew T. Stephen & Barak Libai & Michelle Andrews & Ana Babić Rosario & Inyoung Chae & Zoey Chen & Daniella Kupor & Chiara Longoni & Felipe Thomaz, 2022. "How consumer digital signals are reshaping the customer journey," Journal of the Academy of Marketing Science, Springer, vol. 50(6), pages 1257-1276, November.
    19. Nikolaus Franke & Martin Schreier, 2008. "Product uniqueness as a driver of customer utility in mass customization," Marketing Letters, Springer, vol. 19(2), pages 93-107, June.
    20. Boegershausen, Johannes & Datta, Hannes & Borah, Abhishek & Stephen, Andrew, 2022. "Fields of Gold: Web Scraping and APIs for Impactful Marketing Insights," Other publications TiSEM 5f1ed70a-48c3-422c-bc10-0, Tilburg University, School of Economics and Management.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:272:y:2024:i:c:s0925527324001051. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.