IDEAS home Printed from https://ideas.repec.org/a/inm/ormksc/v41y2022i5p941-965.html
   My bibliography  Save this article

Writing More Compelling Creative Appeals: A Deep Learning-Based Approach

Author

Listed:
  • Jiyeon Hong

    (University of Wisconsin-Madison, Madison, Wisconsin 53706)

  • Paul R. Hoban

    (Amazon.com, Inc., Seattle, Washington 98109)

Abstract

We present a deep learning algorithm to provide personalized feedback on creative appeals, written content intended to persuade readers to undertake some action. Such appeals are widespread in marketing, including advertising copy, RFP responses, call center scripts, product descriptions, and many others. Although marketing research has produced several tools to help managers glean insights from online word-of-mouth, less attention has been paid to creating tools to assist the innumerable marketers responsible for crafting effective marketing messages. Our approach leverages the hierarchical structure of written works, associating words with sentences and sentences with documents, and the linguistic relationships developed therein. We score each sentence in an appeal by its expected contribution to success accounting for its substance and persuasive impact. The sentences with the lowest scores make the appeal less compelling and are the most effective points to focus a revision. The approach has proved effective in a randomized control trial, with subjects rating essays revised with the aid of algorithmic feedback as being 4.5% more likely to achieve their objectives. In addition to providing automated feedback to authors, we leverage the model’s output to derive substantive insights into what makes an appeal compelling.

Suggested Citation

  • Jiyeon Hong & Paul R. Hoban, 2022. "Writing More Compelling Creative Appeals: A Deep Learning-Based Approach," Marketing Science, INFORMS, vol. 41(5), pages 941-965, September.
  • Handle: RePEc:inm:ormksc:v:41:y:2022:i:5:p:941-965
    DOI: 10.1287/mksc.2022.1351
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mksc.2022.1351
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mksc.2022.1351?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Artem Timoshenko & John R. Hauser, 2019. "Identifying Customer Needs from User-Generated Content," Marketing Science, INFORMS, vol. 38(1), pages 1-20, January.
    2. Nikolay Archak & Anindya Ghose & Panagiotis G. Ipeirotis, 2011. "Deriving the Pricing Power of Product Features by Mining Consumer Reviews," Management Science, INFORMS, vol. 57(8), pages 1485-1509, August.
    3. Olivier Toubia & Jonah Berger & Jehoshua Eliashberg, 2021. "How quantifying the shape of stories predicts their success," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 118(26), pages 2011695118-, June.
    4. Joachim Büschken & Greg M. Allenby, 2020. "Improving Text Analysis Using Sentence Conjunctions and Punctuation," Marketing Science, INFORMS, vol. 39(4), pages 727-742, July.
    5. Oded Netzer & Ronen Feldman & Jacob Goldenberg & Moshe Fresko, 2012. "Mine Your Own Business: Market-Structure Surveillance Through Text Mining," Marketing Science, INFORMS, vol. 31(3), pages 521-543, May.
    6. Jonah Berger & Yoon Duk Kim & Robert Meyer & J. Jeffrey Inman & Andrew T Stephen, 2021. "What Makes Content Engaging? How Emotional Dynamics Shape Success," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 48(2), pages 235-250.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiong, Yingqiu & Liu, Yezheng & Qian, Yang & Jiang, Yuanchun & Chai, Yidong & Ling, Haifeng, 2024. "Review-based recommendation under preference uncertainty: An asymmetric deep learning framework," European Journal of Operational Research, Elsevier, vol. 316(3), pages 1044-1057.
    2. Eisenreich, Anja & Just, Julian & Gimenez-Jimenez, Daniela & Füller, Johann, 2024. "Revolution or inflated expectations? Exploring the impact of generative AI on ideation in a practical sustainability context," Technovation, Elsevier, vol. 138(C).
    3. Just, Julian, 2024. "Natural language processing for innovation search – Reviewing an emerging non-human innovation intermediary," Technovation, Elsevier, vol. 129(C).
    4. Borchert, Philipp & Coussement, Kristof & De Weerdt, Jochen & De Caigny, Arno, 2024. "Industry-sensitive language modeling for business," European Journal of Operational Research, Elsevier, vol. 315(2), pages 691-702.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jonah Berger & Grant Packard & Reihane Boghrati & Ming Hsu & Ashlee Humphreys & Andrea Luangrath & Sarah Moore & Gideon Nave & Christopher Olivola & Matthew Rocklage, 2022. "Marketing insights from text analysis," Marketing Letters, Springer, vol. 33(3), pages 365-377, September.
    2. Mengxia Zhang & Lan Luo, 2023. "Can Consumer-Posted Photos Serve as a Leading Indicator of Restaurant Survival? Evidence from Yelp," Management Science, INFORMS, vol. 69(1), pages 25-50, January.
    3. Hasmat Malik & Asyraf Afthanorhan & Noor Aina Amirah & Nuzhat Fatema, 2021. "Machine Learning Approach for Targeting and Recommending a Product for Project Management," Mathematics, MDPI, vol. 9(16), pages 1-29, August.
    4. Ishita Chakraborty & Minkyung Kim & K. Sudhir, 2019. "Attribute Sentiment Scoring With Online Text Reviews : Accounting for Language Structure and Attribute Self-Selection," Cowles Foundation Discussion Papers 2176R2, Cowles Foundation for Research in Economics, Yale University, revised Jun 2021.
    5. Dinesh Puranam & Vrinda Kadiyali & Vishal Narayan, 2021. "The Impact of Increase in Minimum Wages on Consumer Perceptions of Service: A Transformer Model of Online Restaurant Reviews," Marketing Science, INFORMS, vol. 40(5), pages 985-1004, September.
    6. Roelen-Blasberg, Tobias & Habel, Johannes & Klarmann, Martin, 2023. "Automated inference of product attributes and their importance from user-generated content: Can we replace traditional market research?," International Journal of Research in Marketing, Elsevier, vol. 40(1), pages 164-188.
    7. Venkatesh Shankar & Sohil Parsana, 2022. "An overview and empirical comparison of natural language processing (NLP) models and an introduction to and empirical application of autoencoder models in marketing," Journal of the Academy of Marketing Science, Springer, vol. 50(6), pages 1324-1350, November.
    8. Schneider, Matthew J. & Gupta, Sachin, 2016. "Forecasting sales of new and existing products using consumer reviews: A random projections approach," International Journal of Forecasting, Elsevier, vol. 32(2), pages 243-256.
    9. Carlson, Keith & Kopalle, Praveen K. & Riddell, Allen & Rockmore, Daniel & Vana, Prasad, 2023. "Complementing human effort in online reviews: A deep learning approach to automatic content generation and review synthesis," International Journal of Research in Marketing, Elsevier, vol. 40(1), pages 54-74.
    10. Gensler, Sonja & Oehring, Karlo & Wiesel, Thorsten, 2024. "Reported and communicated shifts in strategic emphasis and firm performance," International Journal of Research in Marketing, Elsevier, vol. 41(2), pages 220-240.
    11. Laura Toschi & Elisa Ughetto & Andrea Fronzetti Colladon, 2023. "The identity of social impact venture capitalists: exploring social linguistic positioning and linguistic distinctiveness through text mining," Small Business Economics, Springer, vol. 60(3), pages 1249-1280, March.
    12. Marc R. Dotson & Joachim Büschken & Greg M. Allenby, 2020. "Explaining Preference Heterogeneity with Mixed Membership Modeling," Marketing Science, INFORMS, vol. 39(2), pages 407-426, March.
    13. Christof Naumzik & Stefan Feuerriegel & Markus Weinmann, 2022. "I Will Survive: Predicting Business Failures from Customer Ratings," Marketing Science, INFORMS, vol. 41(1), pages 188-207, January.
    14. Boegershausen, Johannes & Datta, Hannes & Borah, Abhishek & Stephen, Andrew, 2022. "Fields of Gold: Web Scraping and APIs for Impactful Marketing Insights," Other publications TiSEM 5f1ed70a-48c3-422c-bc10-0, Tilburg University, School of Economics and Management.
    15. Dinesh Puranam & Vishal Narayan & Vrinda Kadiyali, 2017. "The Effect of Calorie Posting Regulation on Consumer Opinion: A Flexible Latent Dirichlet Allocation Model with Informative Priors," Marketing Science, INFORMS, vol. 36(5), pages 726-746, September.
    16. Supriyo Mandal & Abyayananda Maiti, 2022. "Network promoter score (NePS): An indicator of product sales in E-commerce retailing sector," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(3), pages 1327-1349, September.
    17. Shimi Naurin Ahmad & Michel Laroche, 2023. "Extracting marketing information from product reviews: a comparative study of latent semantic analysis and probabilistic latent semantic analysis," Journal of Marketing Analytics, Palgrave Macmillan, vol. 11(4), pages 662-676, December.
    18. Yang, Liu & Dong, Shaozeng, 2018. "Rebate strategy to stimulate online customer reviews," International Journal of Production Economics, Elsevier, vol. 204(C), pages 99-107.
    19. Jianwei Liu & Karen Xie & Wei Chen & Yong Liu & Yunlong Sun, 2023. "How incumbents beat disruption? Evidence from hotel responses to home sharing," Production and Operations Management, Production and Operations Management Society, vol. 32(9), pages 2758-2774, September.
    20. Xin (Shane) Wang & Feng Mai & Roger H. L. Chiang, 2014. "Database Submission ---Market Dynamics and User-Generated Content About Tablet Computers," Marketing Science, INFORMS, vol. 33(3), pages 449-458, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormksc:v:41:y:2022:i:5:p:941-965. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.