Random switching exponential smoothing and inventory forecasting
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ijpe.2014.06.016
Download full text from publisher
As the access to this document is restricted, you may want to look for a different version below or
for a different version of it.Other versions of this item:
- Giacomo Sbrana & Andrea Silvestrini, 2014. "Random switching exponential smoothing and inventory forecasting," Temi di discussione (Economic working papers) 971, Bank of Italy, Economic Research and International Relations Area.
References listed on IDEAS
- Moon, Seongmin & Simpson, Andrew & Hicks, Christian, 2013. "The development of a classification model for predicting the performance of forecasting methods for naval spare parts demand," International Journal of Production Economics, Elsevier, vol. 143(2), pages 449-454.
- Sbrana, Giacomo & Silvestrini, Andrea, 2013.
"Aggregation of exponential smoothing processes with an application to portfolio risk evaluation,"
Journal of Banking & Finance, Elsevier, vol. 37(5), pages 1437-1450.
- SBRANA, Giacomo & SILVESTRINI, Andrea, 2010. "Aggregation of exponential smoothing processes with an application to portfolio risk evaluation," LIDAM Discussion Papers CORE 2010039, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Giacomo Sbrana & Andrea Silvestrini, 2012. "Aggregation of exponential smoothing processes with an application to portfolio risk evaluation," Post-Print hal-00779483, HAL.
- Giacomo Sbrana, 2011. "Structural time series models and aggregation: some analytical results," Journal of Time Series Analysis, Wiley Blackwell, vol. 32(3), pages 315-316, May.
- Harvey, Andrew, 2006. "Forecasting with Unobserved Components Time Series Models," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 7, pages 327-412, Elsevier.
- Li, Qinyun & Disney, Stephen M. & Gaalman, Gerard, 2014. "Avoiding the bullwhip effect using Damped Trend forecasting and the Order-Up-To replenishment policy," International Journal of Production Economics, Elsevier, vol. 149(C), pages 3-16.
- Wen, Yi, 2005.
"Understanding the inventory cycle,"
Journal of Monetary Economics, Elsevier, vol. 52(8), pages 1533-1555, November.
- Wen, Yi, 2002. "Understanding the Inventory Cycle," Working Papers 02-04, Cornell University, Center for Analytic Economics.
- Dekker, Mark & van Donselaar, Karel & Ouwehand, Pim, 2004. "How to use aggregation and combined forecasting to improve seasonal demand forecasts," International Journal of Production Economics, Elsevier, vol. 90(2), pages 151-167, July.
- Armstrong, J. Scott, 2006. "Findings from evidence-based forecasting: Methods for reducing forecast error," International Journal of Forecasting, Elsevier, vol. 22(3), pages 583-598.
- Blinder, Alan S & Maccini, Louis J, 1991.
"The Resurgence of Inventory Research: What Have We Learned?,"
Journal of Economic Surveys, Wiley Blackwell, vol. 5(4), pages 291-328.
- Alan S. Blinder & Louis J. Maccini, 1990. "The Resurgence of Inventory Research: What Have We Learned?," NBER Working Papers 3408, National Bureau of Economic Research, Inc.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Tom Doan, "undated". "DMARIANO: RATS procedure to compute Diebold-Mariano Forecast Comparison Test," Statistical Software Components RTS00055, Boston College Department of Economics.
- McKenzie, Eddie & Gardner Jr., Everette S., 2010. "Damped trend exponential smoothing: A modelling viewpoint," International Journal of Forecasting, Elsevier, vol. 26(4), pages 661-665, October.
- James H. Stock & Mark W. Watson, 2007.
"Erratum to "Why Has U.S. Inflation Become Harder to Forecast?","
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(7), pages 1849-1849, October.
- James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
- James H. Stock & Mark W. Watson, 2006. "Why Has U.S. Inflation Become Harder to Forecast?," NBER Working Papers 12324, National Bureau of Economic Research, Inc.
- E S Gardner & E McKenzie, 2011. "Why the damped trend works," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(6), pages 1177-1180, June.
- Alan S. Blinder & Louis J. Maccini, 1991. "Taking Stock: A Critical Assessment of Recent Research on Inventories," Journal of Economic Perspectives, American Economic Association, vol. 5(1), pages 73-96, Winter.
- Nelson, Charles R & Schwert, G William, 1977. "Short-Term Interest Rates as Predictors of Inflation: On Testing the Hypothesis That the Real Rate of Interest is Constant," American Economic Review, American Economic Association, vol. 67(3), pages 478-486, June.
- Gardner, Everette Jr., 2006. "Exponential smoothing: The state of the art--Part II," International Journal of Forecasting, Elsevier, vol. 22(4), pages 637-666.
- Moon, Seongmin & Hicks, Christian & Simpson, Andrew, 2012. "The development of a hierarchical forecasting method for predicting spare parts demand in the South Korean Navy—A case study," International Journal of Production Economics, Elsevier, vol. 140(2), pages 794-802.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wang, Renhe & Wang, Tong & Qian, Zhiyong & Hu, Shulan, 2023. "A Bayesian estimation approach of random switching exponential smoothing with application to credit forecast," Finance Research Letters, Elsevier, vol. 58(PC).
- Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
- Sbrana, Giacomo & Silvestrini, Andrea, 2022. "Random coefficient state-space model: Estimation and performance in M3–M4 competitions," International Journal of Forecasting, Elsevier, vol. 38(1), pages 352-366.
- Tsionas, Mike G., 2022. "Random and Markov switching exponential smoothing models," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
- Kück, Mirko & Freitag, Michael, 2021. "Forecasting of customer demands for production planning by local k-nearest neighbor models," International Journal of Production Economics, Elsevier, vol. 231(C).
- Sbrana, Giacomo & Silvestrini, Andrea, 2019. "Random switching exponential smoothing: A new estimation approach," International Journal of Production Economics, Elsevier, vol. 211(C), pages 211-220.
- Hamidreza Mirtaheri & Piero Macaluso & Maurizio Fantino & Marily Efstratiadi & Sotiris Tsakanikas & Panagiotis Papadopoulos & Andrea Mazza, 2021. "Hybrid Forecast and Control Chain for Operation of Flexibility Assets in Micro-Grids," Energies, MDPI, vol. 14(21), pages 1-22, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sbrana, Giacomo & Silvestrini, Andrea, 2019. "Random switching exponential smoothing: A new estimation approach," International Journal of Production Economics, Elsevier, vol. 211(C), pages 211-220.
- Tsionas, Mike G., 2022. "Random and Markov switching exponential smoothing models," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
- Sbrana, Giacomo & Silvestrini, Andrea, 2013.
"Forecasting aggregate demand: Analytical comparison of top-down and bottom-up approaches in a multivariate exponential smoothing framework,"
International Journal of Production Economics, Elsevier, vol. 146(1), pages 185-198.
- Giacomo Sbrana & Andrea Silvestrini, 2013. "Forecasting aggregate demand: analytical comparison of top-down and bottom-up approaches in a multivariate exponential smoothing framework," Temi di discussione (Economic working papers) 929, Bank of Italy, Economic Research and International Relations Area.
- Sbrana, Giacomo & Silvestrini, Andrea, 2022. "Random coefficient state-space model: Estimation and performance in M3–M4 competitions," International Journal of Forecasting, Elsevier, vol. 38(1), pages 352-366.
- Sbrana, Giacomo & Silvestrini, Andrea & Venditti, Fabrizio, 2017.
"Short-term inflation forecasting: The M.E.T.A. approach,"
International Journal of Forecasting, Elsevier, vol. 33(4), pages 1065-1081.
- Giacomo Sbrana & Andrea Silvestrini & Fabrizio Venditti, 2015. "Short term inflation forecasting: the M.E.T.A. approach," Temi di discussione (Economic working papers) 1016, Bank of Italy, Economic Research and International Relations Area.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Luis Uzeda, 2022.
"State Correlation and Forecasting: A Bayesian Approach Using Unobserved Components Models,"
Advances in Econometrics, in: Essays in Honour of Fabio Canova, volume 44, pages 25-53,
Emerald Group Publishing Limited.
- Luis Uzeda, 2016. "State Correlation and Forecasting: A Bayesian Approach Using Unobserved Components Models," ANU Working Papers in Economics and Econometrics 2016-632, Australian National University, College of Business and Economics, School of Economics.
- Luis Uzeda, 2018. "State Correlation and Forecasting: A Bayesian Approach Using Unobserved Components Models," Staff Working Papers 18-14, Bank of Canada.
- McKnight, Stephen & Mihailov, Alexander & Rumler, Fabio, 2020.
"Inflation forecasting using the New Keynesian Phillips Curve with a time-varying trend,"
Economic Modelling, Elsevier, vol. 87(C), pages 383-393.
- Stephen McKnight & Alexander Mihailov & Kerry Patterson & Fabio Rumler, 2014. "The Predictive Performance of Fundamental Inflation Concepts: An Application to the Euro Area and the United States," Economics Discussion Papers em-dp2014-03, Department of Economics, University of Reading.
- Stephen McKnight & Alexander Mihailov & Fabio Rumler, 2018. "NKPC-Based Inflation Forecasts with a Time-Varying Trend," Serie documentos de trabajo del Centro de Estudios Económicos 2018-05, El Colegio de México, Centro de Estudios Económicos.
- Jochen Hartwig & Sascha Keil, 2025. "The Role of Inventories in European Business Cycles: Evidence from 1999-2023," Chemnitz Economic Papers 066, Department of Economics, Chemnitz University of Technology.
- Poloni, Federico & Sbrana, Giacomo, 2015. "A note on forecasting demand using the multivariate exponential smoothing framework," International Journal of Production Economics, Elsevier, vol. 162(C), pages 143-150.
- Tallman, Ellis W. & Zaman, Saeed, 2017.
"Forecasting inflation: Phillips curve effects on services price measures,"
International Journal of Forecasting, Elsevier, vol. 33(2), pages 442-457.
- Ellis W. Tallman & Saeed Zaman, 2015. "Forecasting Inflation: Phillips Curve Effects on Services Price Measures," Working Papers (Old Series) 1519, Federal Reserve Bank of Cleveland.
- Gardner, Everette S., 2015. "Conservative forecasting with the damped trend," Journal of Business Research, Elsevier, vol. 68(8), pages 1739-1741.
- Marcus Cobb, 2009. "Forecasting Chilean Inflation From Disaggregate Components," Working Papers Central Bank of Chile 545, Central Bank of Chile.
- Manopimoke, Pym & Limjaroenrat, Vorada, 2017.
"Trend inflation estimates for Thailand from disaggregated data,"
Economic Modelling, Elsevier, vol. 65(C), pages 75-94.
- Pym Manopimoke & Vorada Limjaroenrat, 2016. "Trend Inflation Estimates for Thailand from Disaggregated Data," PIER Discussion Papers 51, Puey Ungphakorn Institute for Economic Research.
- Svetunkov, Ivan & Chen, Huijing & Boylan, John E., 2023. "A new taxonomy for vector exponential smoothing and its application to seasonal time series," European Journal of Operational Research, Elsevier, vol. 304(3), pages 964-980.
- Hakeem‐Ur Rehman & Guohua Wan & Raza Rafique, 2023. "A hybrid approach with step‐size aggregation to forecasting hierarchical time series," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(1), pages 176-192, January.
- Hauzenberger, Niko & Huber, Florian & Klieber, Karin & Marcellino, Massimiliano, 2025.
"Bayesian neural networks for macroeconomic analysis,"
Journal of Econometrics, Elsevier, vol. 249(PC).
- Niko Hauzenberger & Florian Huber & Karin Klieber & Massimiliano Marcellino, 2022. "Bayesian Neural Networks for Macroeconomic Analysis," Papers 2211.04752, arXiv.org, revised Apr 2024.
- Hauzenberger , Niko & Huber, Florian & Klieber, Karin & Marcellino, Massimiliano, 2024. "Bayesian Neural Networks for Macroeconomic Analysis," CEPR Discussion Papers 19381, C.E.P.R. Discussion Papers.
- Chen, Qitong & Hong, Yongmiao & Li, Haiqi, 2024. "Time-varying forecast combination for factor-augmented regressions with smooth structural changes," Journal of Econometrics, Elsevier, vol. 240(1).
- Baron, Opher & Callen, Jeffrey L. & Segal, Dan, 2023. "Does the bullwhip matter economically? A cross-sectional firm-level analysis," International Journal of Production Economics, Elsevier, vol. 259(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:156:y:2014:i:c:p:283-294. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/eee/proeco/v156y2014icp283-294.html