IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v162y2015icp143-150.html
   My bibliography  Save this article

A note on forecasting demand using the multivariate exponential smoothing framework

Author

Listed:
  • Poloni, Federico
  • Sbrana, Giacomo

Abstract

Simple exponential smoothing is widely used in forecasting economic time series. This is because it is quick to compute and it generally delivers accurate forecasts. On the other hand, its multivariate version has received little attention due to the complications arising with the estimation. Indeed, standard multivariate maximum likelihood methods are affected by numerical convergence issues and bad complexity, growing with the dimensionality of the model. In this paper, we introduce a new estimation strategy for multivariate exponential smoothing, based on aggregating its observations into scalar models and estimating them. The original high-dimensional maximum likelihood problem is broken down into several univariate ones, which are easier to solve. Contrary to the multivariate maximum likelihood approach, the suggested algorithm does not suffer heavily from the dimensionality of the model. The method can be used for time series forecasting. In addition, simulation results show that our approach performs at least as well as a maximum likelihood estimator on the underlying VMA(1) representation, at least in our test problems.

Suggested Citation

  • Poloni, Federico & Sbrana, Giacomo, 2015. "A note on forecasting demand using the multivariate exponential smoothing framework," International Journal of Production Economics, Elsevier, vol. 162(C), pages 143-150.
  • Handle: RePEc:eee:proeco:v:162:y:2015:i:c:p:143-150
    DOI: 10.1016/j.ijpe.2015.01.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527315000298
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Makridakis, Spyros & Hibon, Michele, 2000. "The M3-Competition: results, conclusions and implications," International Journal of Forecasting, Elsevier, vol. 16(4), pages 451-476.
    2. Bénédicte Vidaillet & V. D'Estaintot & P. Abécassis, 2005. "Introduction," Post-Print hal-00287137, HAL.
    3. Sbrana, Giacomo & Silvestrini, Andrea, 2013. "Forecasting aggregate demand: Analytical comparison of top-down and bottom-up approaches in a multivariate exponential smoothing framework," International Journal of Production Economics, Elsevier, vol. 146(1), pages 185-198.
    4. Holt, Charles C., 2004. "Author's retrospective on 'Forecasting seasonals and trends by exponentially weighted moving averages'," International Journal of Forecasting, Elsevier, vol. 20(1), pages 11-13.
    5. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
    6. Christian Kascha, 2007. "A Comparison of Estimation Methods for Vector Autoregressive Moving-Average Models," Economics Working Papers ECO2007/12, European University Institute.
    7. Chen, Argon & Blue, Jakey, 2010. "Performance analysis of demand planning approaches for aggregating, forecasting and disaggregating interrelated demands," International Journal of Production Economics, Elsevier, vol. 128(2), pages 586-602, December.
    8. Shiqing Ling & Michael McAleer, 2010. "A general asymptotic theory for time-series models," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 64(1), pages 97-111.
    9. Moon, Seongmin & Simpson, Andrew & Hicks, Christian, 2013. "The development of a classification model for predicting the performance of forecasting methods for naval spare parts demand," International Journal of Production Economics, Elsevier, vol. 143(2), pages 449-454.
    10. Harvey,Andrew C., 1991. "Forecasting, Structural Time Series Models and the Kalman Filter," Cambridge Books, Cambridge University Press, number 9780521405737, April.
    11. Moon, Seongmin & Hicks, Christian & Simpson, Andrew, 2012. "The development of a hierarchical forecasting method for predicting spare parts demand in the South Korean Navy—A case study," International Journal of Production Economics, Elsevier, vol. 140(2), pages 794-802.
    12. Zotteri, Giulio & Kalchschmidt, Matteo & Caniato, Federico, 2005. "The impact of aggregation level on forecasting performance," International Journal of Production Economics, Elsevier, vol. 93(1), pages 479-491, January.
    13. Harvey,Andrew C., 1990. "Forecasting, Structural Time Series Models and the Kalman Filter," Cambridge Books, Cambridge University Press, number 9780521321969, April.
    14. repec:taf:emetrv:v:31:y:2012:i:3:p:297-324 is not listed on IDEAS
    15. Ord, Keith & Hibon, Michele & Makridakis, Spyros, 2000. "The M3-Competition1," International Journal of Forecasting, Elsevier, vol. 16(4), pages 433-436.
    16. Dekker, Mark & van Donselaar, Karel & Ouwehand, Pim, 2004. "How to use aggregation and combined forecasting to improve seasonal demand forecasts," International Journal of Production Economics, Elsevier, vol. 90(2), pages 151-167, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sbrana, Giacomo & Silvestrini, Andrea & Venditti, Fabrizio, 2017. "Short-term inflation forecasting: The M.E.T.A. approach," International Journal of Forecasting, Elsevier, vol. 33(4), pages 1065-1081.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:162:y:2015:i:c:p:143-150. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.