IDEAS home Printed from
   My bibliography  Save this article

A general asymptotic theory for time-series models


  • Shiqing Ling
  • Michael McAleer


This paper develops a general asymptotic theory for the estimation of strictly stationary and ergodic time series models. Under simple conditions that are straightforward to check, we establish the strong consistency, the rate of strong convergence and the asymptotic normality of a general class of estimators that includes LSE, MLE, and some M-type estimators. As an application, we verify the assumptions for the long-memory fractional ARIMA model. Other examples include the GARCH(1,1) model, random coefficient AR(1) model and the threshold MA(1) model.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Shiqing Ling & Michael McAleer, 2010. "A general asymptotic theory for time-series models," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 64(1), pages 97-111.
  • Handle: RePEc:bla:stanee:v:64:y:2010:i:1:p:97-111

    Download full text from publisher

    File URL:
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    1. Ling, Shiqing & McAleer, Michael, 2003. "Asymptotic Theory For A Vector Arma-Garch Model," Econometric Theory, Cambridge University Press, vol. 19(02), pages 280-310, April.
    2. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    3. Jeantheau, Thierry, 1998. "Strong Consistency Of Estimators For Multivariate Arch Models," Econometric Theory, Cambridge University Press, vol. 14(01), pages 70-86, February.
    4. Shiqing Ling, 2004. "Estimation and testing stationarity for double-autoregressive models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 63-78.
    5. J. Pfanzagl, 1969. "On the measurability and consistency of minimum contrast estimates," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 14(1), pages 249-272, December.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Caporin, Massimiliano & Rossi, Eduardo & Santucci de Magistris, Paolo, 2017. "Chasing volatility," Journal of Econometrics, Elsevier, vol. 198(1), pages 122-145.
    2. Ke Zhu & Shiqing Ling, 2015. "LADE-Based Inference for ARMA Models With Unspecified and Heavy-Tailed Heteroscedastic Noises," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 784-794, June.
    3. Song, Junmo & Oh, Dong-hyun & Kang, Jiwon, 2017. "Robust estimation in stochastic frontier models," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 243-267.
    4. Davide Delle Monache & Stefano Grassi & Paolo Santucci de Magistris, 0404. "Does the ARFIMA really shift?," CREATES Research Papers 2017-16, Department of Economics and Business Economics, Aarhus University.
    5. Christian Francq & Jean-Michel Zakoïan, 2013. "Estimating the Marginal Law of a Time Series With Applications to Heavy-Tailed Distributions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(4), pages 412-425, October.
    6. Poloni, Federico & Sbrana, Giacomo, 2015. "A note on forecasting demand using the multivariate exponential smoothing framework," International Journal of Production Economics, Elsevier, vol. 162(C), pages 143-150.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:stanee:v:64:y:2010:i:1:p:97-111. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.