IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v581y2021ics0378437121004714.html
   My bibliography  Save this article

A statistical evidence of power law distribution in the upper tail of world billionaires’ data 2010–20

Author

Listed:
  • Asif, Muhammad
  • Hussain, Zawar
  • Asghar, Zahid
  • Hussain, Muhammad Irfan
  • Raftab, Mariya
  • Shah, Said Farooq
  • Khan, Akbar Ali

Abstract

There are real life phenomena in which the underlying process forces the majority of the objects to be small and very few to be large, e.g., wealth, city sizes, firm sizes and many alike. Such behaviors are said to follow heavy tailed distribution. To give a statistical understanding of the wealth disparity, this study investigates the tail behavior of world billionaires’ data 2010–20 taken from Forbes magazine. For this purpose, initially, the tails of underlying data sets are identified by estimating the minimum thresholds using KS test. Then three well known models namely, Power Law, Lognormal and Exponential are tested to model the tail behavior through different model adequacy criteria e.g., KS, AIC, BIC, LRT and Bayes factor. Based on numerical results using KS test, AIC, BIC and Bayes factor, we observed that upper tail of wealth data for each year follows a well-known PL distribution with exponent ranging from 1.306 to 1.571 while LRT results depict that both PL and Lognormal distribution are equally adequate for the upper tail of wealth data. Moreover, the estimate of PL exponent is significantly higher than unity which implies that the distribution of wealth among billionaires is more evenly distributed than as suggested by Zipf’s Law. Results obtained using rolling sampling indicate that the PL exponent is inversely related to the sample size. However, no such pattern is witnessed in the bootstrap simulation results while estimating the PL exponent.

Suggested Citation

  • Asif, Muhammad & Hussain, Zawar & Asghar, Zahid & Hussain, Muhammad Irfan & Raftab, Mariya & Shah, Said Farooq & Khan, Akbar Ali, 2021. "A statistical evidence of power law distribution in the upper tail of world billionaires’ data 2010–20," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
  • Handle: RePEc:eee:phsmap:v:581:y:2021:i:c:s0378437121004714
    DOI: 10.1016/j.physa.2021.126198
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437121004714
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2021.126198?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo, Qiang & Gao, Li, 2012. "Distribution of individual incomes in China between 1992 and 2009," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(21), pages 5139-5145.
    2. Sinha, Sitabhra, 2006. "Evidence for power-law tail of the wealth distribution in India," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 359(C), pages 555-562.
    3. Drăgulescu, Adrian & Yakovenko, Victor M., 2001. "Exponential and power-law probability distributions of wealth and income in the United Kingdom and the United States," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 213-221.
    4. S. Redner, 1998. "How popular is your paper? An empirical study of the citation distribution," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 4(2), pages 131-134, July.
    5. Miyazima, Sasuke & Lee, Youngki & Nagamine, Tomomasa & Miyajima, Hiroaki, 2000. "Power-law distribution of family names in Japanese societies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 278(1), pages 282-288.
    6. Rosen, Kenneth T. & Resnick, Mitchel, 1980. "The size distribution of cities: An examination of the Pareto law and primacy," Journal of Urban Economics, Elsevier, vol. 8(2), pages 165-186, September.
    7. Bee, Marco & Riccaboni, Massimo & Schiavo, Stefano, 2017. "Where Gibrat meets Zipf: Scale and scope of French firms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 265-275.
    8. Giesen, Kristian & Zimmermann, Arndt & Suedekum, Jens, 2010. "The size distribution across all cities - Double Pareto lognormal strikes," Journal of Urban Economics, Elsevier, vol. 68(2), pages 129-137, September.
    9. Arshad, Sidra & Hu, Shougeng & Ashraf, Badar Nadeem, 2019. "Zipf’s law, the coherence of the urban system and city size distribution: Evidence from Pakistan," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 87-103.
    10. Montebruno, Piero & Bennett, Robert J. & van Lieshout, Carry & Smith, Harry, 2019. "A tale of two tails: Do Power Law and Lognormal models fit firm-size distributions in the mid-Victorian era?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 858-875.
    11. Cederman, Lars-Erik, 2003. "Modeling the Size of Wars: From Billiard Balls to Sandpiles," American Political Science Review, Cambridge University Press, vol. 97(1), pages 135-150, February.
    12. Rafael González-Val & Arturo Ramos & Fernando Sanz-Gracia & María Vera-Cabello, 2015. "Size distributions for all cities: Which one is best?," Papers in Regional Science, Wiley Blackwell, vol. 94(1), pages 177-196, March.
    13. Clementi, F. & Gallegati, M., 2005. "Power law tails in the Italian personal income distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 350(2), pages 427-438.
    14. Coelho, Ricardo & Néda, Zoltán & Ramasco, José J. & Augusta Santos, Maria, 2005. "A family-network model for wealth distribution in societies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 353(C), pages 515-528.
    15. Gabaix, Xavier & Ioannides, Yannis M., 2004. "The evolution of city size distributions," Handbook of Regional and Urban Economics, in: J. V. Henderson & J. F. Thisse (ed.), Handbook of Regional and Urban Economics, edition 1, volume 4, chapter 53, pages 2341-2378, Elsevier.
    16. Gangopadhyay, Kausik & Basu, B., 2009. "City size distributions for India and China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(13), pages 2682-2688.
    17. Banerjee, Anand & Yakovenko, Victor M. & Di Matteo, T., 2006. "A study of the personal income distribution in Australia," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(1), pages 54-59.
    18. Devadoss, Stephen & Luckstead, Jeff & Danforth, Diana & Akhundjanov, Sherzod, 2016. "The power law distribution for lower tail cities in India," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 193-196.
    19. Levy, Moshe & Solomon, Sorin, 1997. "New evidence for the power-law distribution of wealth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 242(1), pages 90-94.
    20. Hegyi, Géza & Néda, Zoltán & Augusta Santos, Maria, 2007. "Wealth distribution and Pareto's law in the Hungarian medieval society," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 380(C), pages 271-277.
    21. Xavier Gabaix & Rustam Ibragimov, 2011. "Rank - 1 / 2: A Simple Way to Improve the OLS Estimation of Tail Exponents," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(1), pages 24-39, January.
    22. Ioannides, Yannis & Skouras, Spyros, 2013. "US city size distribution: Robustly Pareto, but only in the tail," Journal of Urban Economics, Elsevier, vol. 73(1), pages 18-29.
    23. Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-333, March.
    24. Duncan Black & Vernon Henderson, 2003. "Urban evolution in the USA," Journal of Economic Geography, Oxford University Press, vol. 3(4), pages 343-372, October.
    25. Sarabia, José María & Prieto, Faustino, 2009. "The Pareto-positive stable distribution: A new descriptive model for city size data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(19), pages 4179-4191.
    26. Chester, Winston C. & Alam, Bhuiyan Monwar & Haase, Dwight, 2016. "“One slowly loses everything”: Development and debt in San Antonio Aguas Calientes," World Development Perspectives, Elsevier, vol. 4(C), pages 24-29.
    27. Marco Bee & Massimo Riccaboni & Stefano Schiavo, 2011. "Pareto versus lognormal: a maximum entropy test," Department of Economics Working Papers 1102, Department of Economics, University of Trento, Italia.
    28. Donald R. Davis & David E. Weinstein, 2002. "Bones, Bombs, and Break Points: The Geography of Economic Activity," American Economic Review, American Economic Association, vol. 92(5), pages 1269-1289, December.
    29. Luckstead, Jeff & Devadoss, Stephen, 2014. "A comparison of city size distributions for China and India from 1950 to 2010," Economics Letters, Elsevier, vol. 124(2), pages 290-295.
    30. Daniel Treisman, 2016. "Russia's Billionaires," American Economic Review, American Economic Association, vol. 106(5), pages 236-241, May.
    31. Moura, Newton J. & Ribeiro, Marcelo B., 2006. "Zipf law for Brazilian cities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 441-448.
    32. A. C. Silva & V. M. Yakovenko, 2005. "Two-class structure of the personal income distribution in the USA in 1983-2001," Computing in Economics and Finance 2005 124, Society for Computational Economics.
    33. Tomson Ogwang, 2011. "Power laws in top wealth distributions: evidence from Canada," Empirical Economics, Springer, vol. 41(2), pages 473-486, October.
    34. Bee, Marco & Riccaboni, Massimo & Schiavo, Stefano, 2013. "The size distribution of US cities: Not Pareto, even in the tail," Economics Letters, Elsevier, vol. 120(2), pages 232-237.
    35. Zanette, Damián H & Manrubia, Susanna C, 2001. "Vertical transmission of culture and the distribution of family names," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 295(1), pages 1-8.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Valero, Jordi & Pérez-Casany, Marta & Duarte-López, Ariel, 2022. "The Zipf-Polylog distribution: Modeling human interactions through social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arshad, Sidra & Hu, Shougeng & Ashraf, Badar Nadeem, 2019. "Zipf’s law, the coherence of the urban system and city size distribution: Evidence from Pakistan," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 87-103.
    2. Ogwang, Tomson, 2013. "Is the wealth of the world’s billionaires Paretian?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 757-762.
    3. Brzezinski, Michal, 2014. "Do wealth distributions follow power laws? Evidence from ‘rich lists’," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 155-162.
    4. Calderín-Ojeda, Enrique, 2016. "The distribution of all French communes: A composite parametric approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 385-394.
    5. Hasan Engin Duran & Andrzej Cieślik, 2021. "The distribution of city sizes in Turkey: A failure of Zipf’s law due to concavity," Regional Science Policy & Practice, Wiley Blackwell, vol. 13(5), pages 1702-1719, October.
    6. Ramos, Arturo & Sanz-Gracia, Fernando & González-Val, Rafael, 2013. "A new framework for the US city size distribution: Empirical evidence and theory," MPRA Paper 52190, University Library of Munich, Germany.
    7. Giorgio Fazio & Marco Modica, 2015. "Pareto Or Log-Normal? Best Fit And Truncation In The Distribution Of All Cities," Journal of Regional Science, Wiley Blackwell, vol. 55(5), pages 736-756, November.
    8. Gómez-Déniz, Emilio & Calderín-Ojeda, Enrique, 2015. "On the use of the Pareto ArcTan distribution for describing city size in Australia and New Zealand," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 821-832.
    9. Ronan Lyons & Elisa Maria Tirindelli, 2022. "The Rise & Fall of Urban Concentration in Britain: Zipf, Gibrat and Gini across two centuries," Trinity Economics Papers tep0522, Trinity College Dublin, Department of Economics.
    10. Valente J. Matlaba & Mark J. Holmes & Philip McCann & Jacques Poot, 2013. "A Century Of The Evolution Of The Urban System In Brazil," Review of Urban & Regional Development Studies, Wiley Blackwell, vol. 25(3), pages 129-151, November.
    11. Ramos, Arturo & Sanz-Gracia, Fernando, 2015. "US city size distribution revisited: Theory and empirical evidence," MPRA Paper 64051, University Library of Munich, Germany.
    12. Gualandi, Stefano & Toscani, Giuseppe, 2019. "Size distribution of cities: A kinetic explanation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 221-234.
    13. Duranton, Gilles & Puga, Diego, 2014. "The Growth of Cities," Handbook of Economic Growth, in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 2, chapter 5, pages 781-853, Elsevier.
    14. Christian Düben & Melanie Krause, 2021. "Population, light, and the size distribution of cities," Journal of Regional Science, Wiley Blackwell, vol. 61(1), pages 189-211, January.
    15. Kii, Masanobu & Akimoto, Keigo & Doi, Kenji, 2012. "Random-growth urban model with geographical fitness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(23), pages 5960-5970.
    16. Josic Hrvoje & Bašić Maja, 2018. "Reconsidering Zipf’s law for regional development: The case of settlements and cities in Croatia," Miscellanea Geographica. Regional Studies on Development, Sciendo, vol. 22(1), pages 22-30, March.
    17. Luckstead, Jeff & Devadoss, Stephen & Danforth, Diana, 2017. "The size distributions of all Indian cities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 237-249.
    18. Safari, Muhammad Aslam Mohd & Masseran, Nurulkamal & Ibrahim, Kamarulzaman & AL-Dhurafi, Nasr Ahmed, 2020. "The power-law distribution for the income of poor households," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    19. Giorgio Fazio & Marco Modica, 2012. "Pareto or log-normal? A recursive-truncation approach to the distribution of (all) cities," Working Papers 2012_10, Business School - Economics, University of Glasgow.
    20. Pankaj Bajracharya & Selima Sultana, 2020. "Rank-size Distribution of Cities and Municipalities in Bangladesh," Sustainability, MDPI, vol. 12(11), pages 1-26, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:581:y:2021:i:c:s0378437121004714. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.