IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v563y2021ics0378437120307603.html
   My bibliography  Save this article

Maximum entropy framework for a universal rank order distribution with socio-economic applications

Author

Listed:
  • Ghosh, Abhik
  • Shreya, Preety
  • Basu, Banasri

Abstract

In this paper, we formulate a maximum entropy framework for a two-parameter Rank-Order (RO) distribution, namely the discrete generalized beta distribution (DGBD), which has recently been observed to be extremely useful in modeling several rank-size distributions from different context in Arts and Sciences, as a two-parameter generalization of Zipf’s law. Although it has been seen to provide excellent fits for several real world empirical datasets, the underlying theory responsible for the success of this particular rank order distribution is not explored properly. Here we, for the first time, provide its generating process which describes it as a natural maximum entropy distribution under an appropriate bivariate utility constraint. Further, we have shown that the maximum entropy principle used in estimating probabilistic models from appropriate constraints, via the RO distribution, is also the underlying basis of many socio-economic models. We have demonstrated its acceptability in modeling of different types of socio-economic factors within a country as well as across the countries. The values of distributional parameters estimated through a rigorous statistical estimation method, along with the entropy values, are used to characterize the distributions of all these socio-economic factors over the years.

Suggested Citation

  • Ghosh, Abhik & Shreya, Preety & Basu, Banasri, 2021. "Maximum entropy framework for a universal rank order distribution with socio-economic applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
  • Handle: RePEc:eee:phsmap:v:563:y:2021:i:c:s0378437120307603
    DOI: 10.1016/j.physa.2020.125433
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437120307603
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.125433?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James B. McDonald, 2008. "Some Generalized Functions for the Size Distribution of Income," Economic Studies in Inequality, Social Exclusion, and Well-Being, in: Duangkamon Chotikapanich (ed.), Modeling Income Distributions and Lorenz Curves, chapter 3, pages 37-55, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deeb, Omar El, 2023. "Entropic spatial auto-correlation of voter uncertainty and voter transitions in parliamentary elections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 617(C).
    2. Ghosh, Abhik & Mallick, Olivia & Chattopadhay, Souvik & Basu, Banasri, 2022. "Strata-based quantification of distributional uncertainty in socio-economic indicators: A comparative study of Indian states," Socio-Economic Planning Sciences, Elsevier, vol. 81(C).
    3. Nowak, Przemysław & Santolini, Marc & Singh, Chakresh & Siudem, Grzegorz & Tupikina, Liubov, 2024. "Beyond Zipf’s law: Exploring the discrete generalized beta distribution in open-source repositories," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 649(C).
    4. Cena, Anna & Gagolewski, Marek & Siudem, Grzegorz & Żogała-Siudem, Barbara, 2022. "Validating citation models by proxy indices," Journal of Informetrics, Elsevier, vol. 16(2).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dickens, Richard & Machin, Stephen & Manning, Alan, 1998. "Estimating the effect of minimum wages on employment from the distribution of wages: A critical view," Labour Economics, Elsevier, vol. 5(2), pages 109-134, June.
    2. Meya, Jasper N. & Drupp, Moritz A. & Hanley, Nick, 2021. "Testing structural benefit transfer: The role of income inequality," Resource and Energy Economics, Elsevier, vol. 64(C).
    3. Abbring, Jaap H. & van den Berg, Gerard J., 2003. "A Simple Procedure for the Evaluation of Treatment Effects on Duration Variables," IZA Discussion Papers 810, Institute of Labor Economics (IZA).
    4. van den Berg, Gerard J., 2007. "On the uniqueness of optimal prices set by monopolistic sellers," Journal of Econometrics, Elsevier, vol. 141(2), pages 482-491, December.
    5. Mathias Silva, 2023. "Parametric models of income distributions integrating misreporting and non-response mechanisms," AMSE Working Papers 2311, Aix-Marseille School of Economics, France.
    6. Hajargasht, Gholamreza & Griffiths, William E., 2013. "Pareto–lognormal distributions: Inequality, poverty, and estimation from grouped income data," Economic Modelling, Elsevier, vol. 33(C), pages 593-604.
    7. Saissi Hassani, Samir & Dionne, Georges, 2021. "The New International Regulation of Market Risk: Roles of VaR and CVaR in Model Validation," Working Papers 21-1, HEC Montreal, Canada Research Chair in Risk Management.
    8. Puente-Ajovin, Miguel & Ramos, Arturo, 2015. "An improvement over the normal distribution for log-growth rates of city sizes: Empirical evidence for France, Germany, Italy and Spain," MPRA Paper 67471, University Library of Munich, Germany.
    9. Camelia Minoiu & Sanjay Reddy, 2014. "Kernel density estimation on grouped data: the case of poverty assessment," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 12(2), pages 163-189, June.
    10. Dmitry I. Malakhov & Nikolay P. Pilnik & Igor G. Pospelov, 2015. "Stability of Distribution of Relative Sizes of Banks as an Argument for the Use of the Representative Agent Concept," HSE Working papers WP BRP 116/EC/2015, National Research University Higher School of Economics.
    11. Alexey Kudryavtsev & Oleg Shestakov, 2023. "Estimates of the Convergence Rate in the Generalized Rényi Theorem with a Structural Digamma Distribution Using Zeta Metrics," Mathematics, MDPI, vol. 11(21), pages 1-10, October.
    12. Masato Okamoto, 2014. "Interpolating the Lorenz Curve: Methods to Preserve Shape and Remain Consistent with the Concentration Curves for Components," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 60(2), pages 349-384, June.
    13. Peter Grösche & Carsten Schröder, 2014. "On the redistributive effects of Germany’s feed-in tariff," Empirical Economics, Springer, vol. 46(4), pages 1339-1383, June.
    14. Alexander, Carol & Cordeiro, Gauss M. & Ortega, Edwin M.M. & Sarabia, José María, 2012. "Generalized beta-generated distributions," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1880-1897.
    15. Belzunce, Félix & Pinar, José F. & Ruiz, José M. & Sordo, Miguel A., 2013. "Comparison of concentration for several families of income distributions," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1036-1045.
    16. Satya Paul & Sriram Shankar, 2020. "An alternative single parameter functional form for Lorenz curve," Empirical Economics, Springer, vol. 59(3), pages 1393-1402, September.
    17. Cowell, Frank A. & Flachaire, Emmanuel, 2007. "Income distribution and inequality measurement: The problem of extreme values," Journal of Econometrics, Elsevier, vol. 141(2), pages 1044-1072, December.
    18. Dorothée Boccanfuso & Bernard Decaluwé & Luc Savard, 2008. "Poverty, income distribution and CGE micro-simulation modeling: Does the functional form of distribution matter?," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 6(2), pages 149-184, June.
    19. Markus P. A. Schneider, 2013. "Race & Gender Differences in the Experience of Earnings Inequality in the US from 1995 to 2010," Working Papers 1303, New School for Social Research, Department of Economics.
    20. Vladimir Hlasny & Paolo Verme, 2018. "Top Incomes and Inequality Measurement: A Comparative Analysis of Correction Methods Using the EU SILC Data," Econometrics, MDPI, vol. 6(2), pages 1-21, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:563:y:2021:i:c:s0378437120307603. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.