IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v452y2016icp79-85.html
   My bibliography  Save this article

Complexity of carbon market from multi-scale entropy analysis

Author

Listed:
  • Fan, Xinghua
  • Li, Shasha
  • Tian, Lixin

Abstract

Complexity of carbon market is the consequence of economic dynamics and extreme social political events in global carbon markets. The multi-scale entropy can measure the long-term structures in the daily price return time series. By using multi-scale entropy analysis, we explore the complexity of carbon market and mean reversion trend of daily price return. The logarithmic difference of data Dec16 from August 6, 2010 to May 22, 2015 is selected as the sample. The entropy is higher in small time scale, while lower in large. The dependence of the entropy on the time scale reveals the mean reversion of carbon prices return in the long run. A relatively great fluctuation over some short time period indicates that the complexity of carbon market evolves consistently with economic development track and the events of international climate conferences.

Suggested Citation

  • Fan, Xinghua & Li, Shasha & Tian, Lixin, 2016. "Complexity of carbon market from multi-scale entropy analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 79-85.
  • Handle: RePEc:eee:phsmap:v:452:y:2016:i:c:p:79-85
    DOI: 10.1016/j.physa.2016.01.078
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116001424
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Malliaropulos, Dimitrios & Priestley, Richard, 1999. "Mean reversion in Southeast Asian stock markets," Journal of Empirical Finance, Elsevier, vol. 6(4), pages 355-384, October.
    2. Oh, Gabjin & Kim, Seunghwan & Eom, Cheoljun, 2007. "Market efficiency in foreign exchange markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(1), pages 209-212.
    3. Hintermann, Beat, 2010. "Allowance price drivers in the first phase of the EU ETS," Journal of Environmental Economics and Management, Elsevier, vol. 59(1), pages 43-56, January.
    4. Eduardo Schwartz & James E. Smith, 2000. "Short-Term Variations and Long-Term Dynamics in Commodity Prices," Management Science, INFORMS, vol. 46(7), pages 893-911, July.
    5. Robert S. Pindyck, 1999. "The Long-Run Evolutions of Energy Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 1-27.
    6. Feng, Zhen-Hua & Zou, Le-Le & Wei, Yi-Ming, 2011. "Carbon price volatility: Evidence from EU ETS," Applied Energy, Elsevier, vol. 88(3), pages 590-598, March.
    7. Chevallier, Julien & Ielpo, Florian & Mercier, Ludovic, 2009. "Risk aversion and institutional information disclosure on the European carbon market: A case-study of the 2006 compliance event," Energy Policy, Elsevier, vol. 37(1), pages 15-28, January.
    8. Cochrane, John H, 1988. "How Big Is the Random Walk in GNP?," Journal of Political Economy, University of Chicago Press, vol. 96(5), pages 893-920, October.
    9. Ortiz-Cruz, Alejandro & Rodriguez, Eduardo & Ibarra-Valdez, Carlos & Alvarez-Ramirez, Jose, 2012. "Efficiency of crude oil markets: Evidences from informational entropy analysis," Energy Policy, Elsevier, vol. 41(C), pages 365-373.
    10. Darbellay, Georges A & Wuertz, Diethelm, 2000. "The entropy as a tool for analysing statistical dependences in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 429-439.
    11. Wu, Shuen-De & Wu, Chiu-Wen & Lee, Kung-Yen & Lin, Shiou-Gwo, 2013. "Modified multiscale entropy for short-term time series analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 5865-5873.
    12. Martina, Esteban & Rodriguez, Eduardo & Escarela-Perez, Rafael & Alvarez-Ramirez, Jose, 2011. "Multiscale entropy analysis of crude oil price dynamics," Energy Economics, Elsevier, vol. 33(5), pages 936-947, September.
    13. repec:dau:papers:123456789/4221 is not listed on IDEAS
    14. Robert S. Pindyck, 2001. "The Dynamics of Commodity Spot and Futures Markets: A Primer," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 1-30.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:452:y:2016:i:c:p:79-85. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.