IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v444y2016icp505-523.html
   My bibliography  Save this article

Nonlinear structure analysis of carbon and energy markets with MFDCCA based on maximum overlap wavelet transform

Author

Listed:
  • Cao, Guangxi
  • Xu, Wei

Abstract

This paper investigates the nonlinear structure between carbon and energy markets by employing the maximum overlap wavelet transform (MODWT) as well as the multifractal detrended cross-correlation analysis based on maximum overlap wavelet transform (MFDCCA-MODWT). Based on the MODWT multiresolution analysis and the statistic Qcc(m) significance, relatively significant cross-correlations are obtained between carbon and energy future markets either on different time scales or on the whole. The result of the Granger causality test indicates bidirectional Granger causality between carbon and electricity future markets, although the Granger causality relationship between the carbon and oil price is not evident. The existence of multifractality for the returns between carbon and energy markets is proven with the MFDCCA-MODWT algorithm. In addition, results of investigating the origin of multifractality demonstrate that both long-range correlations and fat-tailed distributions play important roles in the contributions of multifractality.

Suggested Citation

  • Cao, Guangxi & Xu, Wei, 2016. "Nonlinear structure analysis of carbon and energy markets with MFDCCA based on maximum overlap wavelet transform," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 505-523.
  • Handle: RePEc:eee:phsmap:v:444:y:2016:i:c:p:505-523
    DOI: 10.1016/j.physa.2015.10.070
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437115009292
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.10.070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Górski, A.Z & Drożdż, S & Speth, J, 2002. "Financial multifractality and its subtleties: an example of DAX," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 496-510.
    2. Yuan, Ying & Zhuang, Xin-tian & Liu, Zhi-ying, 2012. "Price–volume multifractal analysis and its application in Chinese stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(12), pages 3484-3495.
    3. Wei-Xing Zhou, 2009. "The components of empirical multifractality in financial returns," Papers 0908.1089, arXiv.org, revised Oct 2009.
    4. He, Ling-Yun & Chen, Shu-Peng, 2011. "A new approach to quantify power-law cross-correlation and its application to commodity markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3806-3814.
    5. Chen, Shu-Peng & He, Ling-Yun, 2010. "Multifractal spectrum analysis of nonlinear dynamical mechanisms in China’s agricultural futures markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(7), pages 1434-1444.
    6. repec:dau:papers:123456789/6790 is not listed on IDEAS
    7. Zhou, Wei-Xing, 2012. "Finite-size effect and the components of multifractality in financial volatility," Chaos, Solitons & Fractals, Elsevier, vol. 45(2), pages 147-155.
    8. Barunik, Jozef & Aste, Tomaso & Di Matteo, T. & Liu, Ruipeng, 2012. "Understanding the source of multifractality in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(17), pages 4234-4251.
    9. Zhi-Qiang Jiang & Wei-Xing Zhou, 2011. "Multifractal detrending moving average cross-correlation analysis," Papers 1103.2577, arXiv.org, revised Mar 2011.
    10. Wang, Yudong & Wei, Yu & Wu, Chongfeng, 2011. "Detrended fluctuation analysis on spot and futures markets of West Texas Intermediate crude oil," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(5), pages 864-875.
    11. Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2008. "Multifractality in stock indexes: Fact or Fiction?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(14), pages 3605-3614.
    12. Ling-Yun He & Sheng Yang & Wen-Si Xie & Zhi-Hong Han, 2014. "Contemporaneous and Asymmetric Properties in the Price-Volume Relationships in China's Agricultural Futures Markets," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 50(1S), pages 148-166, January.
    13. Z.-Q. Jiang & L. Guo & W.-X. Zhou, 2007. "Endogenous and exogenous dynamics in the fluctuations of capital fluxes," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 57(3), pages 347-355, June.
    14. Bunn, Derek W. & Fezzi, Carlo, 2007. "Interaction of European Carbon Trading and Energy Prices," Climate Change Modelling and Policy Working Papers 9092, Fondazione Eni Enrico Mattei (FEEM).
    15. Chevallier, Julien, 2011. "A model of carbon price interactions with macroeconomic and energy dynamics," Energy Economics, Elsevier, vol. 33(6), pages 1295-1312.
    16. Julien Chevallier, 2012. "Time-varying correlations in oil, gas and CO 2 prices: an application using BEKK, CCC and DCC-MGARCH models," Applied Economics, Taylor & Francis Journals, vol. 44(32), pages 4257-4274, November.
    17. Derek W. Bunn & Carlo Fezzi, 2007. "Interaction of European Carbon Trading and Energy Prices," Working Papers 2007.63, Fondazione Eni Enrico Mattei.
    18. Zhao, Xiaojun & Shang, Pengjian & Zhao, Chuang & Wang, Jing & Tao, Rui, 2012. "Minimizing the trend effect on detrended cross-correlation analysis with empirical mode decomposition," Chaos, Solitons & Fractals, Elsevier, vol. 45(2), pages 166-173.
    19. B. Podobnik & I. Grosse & D. Horvatić & S. Ilic & P. Ch. Ivanov & H. E. Stanley, 2009. "Quantifying cross-correlations using local and global detrending approaches," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 71(2), pages 243-250, September.
    20. He, Ling-Yun & Chen, Shu-Peng, 2010. "Are crude oil markets multifractal? Evidence from MF-DFA and MF-SSA perspectives," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(16), pages 3218-3229.
    21. A. Z. Gorski & S. Drozdz & J. Speth, 2002. "Financial multifractality and its subtleties: an example of DAX," Papers cond-mat/0205482, arXiv.org.
    22. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    23. Zhao, Xiaojun & Shang, Pengjian & Lin, Aijing & Chen, Gang, 2011. "Multifractal Fourier detrended cross-correlation analysis of traffic signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3670-3678.
    24. Wei-Xing Zhou, 2008. "Multifractal detrended cross-correlation analysis for two nonstationary signals," Papers 0803.2773, arXiv.org.
    25. Khalfaoui, R. & Boutahar, M. & Boubaker, H., 2015. "Analyzing volatility spillovers and hedging between oil and stock markets: Evidence from wavelet analysis," Energy Economics, Elsevier, vol. 49(C), pages 540-549.
    26. Kendal, Wayne S., 2014. "Multifractality attributed to dual central limit-like convergence effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 22-33.
    27. repec:dau:papers:123456789/6969 is not listed on IDEAS
    28. repec:dau:papers:123456789/4222 is not listed on IDEAS
    29. Zachmann, Georg & von Hirschhausen, Christian, 2008. "First evidence of asymmetric cost pass-through of EU emissions allowances: Examining wholesale electricity prices in Germany," Economics Letters, Elsevier, vol. 99(3), pages 465-469, June.
    30. Kaushik Matia & Yosef Ashkenazy & H. Eugene Stanley, 2003. "Multifractal Properties of Price Fluctuations of Stocks and Commodities," Papers cond-mat/0308012, arXiv.org.
    31. Nason, G.P. & von Sachs, R., 1999. "Wavelets in Time Series Analysis," Papers 9901, Catholique de Louvain - Institut de statistique.
    32. Cao, Guangxi & Xu, Longbing & Cao, Jie, 2012. "Multifractal detrended cross-correlations between the Chinese exchange market and stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 4855-4866.
    33. Kwapień, J. & Oświe¸cimka, P. & Drożdż, S., 2005. "Components of multifractality in high-frequency stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 350(2), pages 466-474.
    34. Robin Smale & Murray Hartley & Cameron Hepburn & John Ward & Michael Grubb, 2006. "The impact of CO 2 emissions trading on firm profits and market prices," Climate Policy, Taylor & Francis Journals, vol. 6(1), pages 31-48, January.
    35. Chen, Su-Mei & He, Ling-Yun, 2014. "Welfare loss of China's air pollution: How to make personal vehicle transportation policy," China Economic Review, Elsevier, vol. 31(C), pages 106-118.
    36. Jian Zhou, 2012. "Multiscale Analysis of International Linkages of REIT Returns and Volatilities," The Journal of Real Estate Finance and Economics, Springer, vol. 45(4), pages 1062-1087, November.
    37. Alberola, Emilie & Chevallier, Julien & Cheze, Benoi^t, 2008. "Price drivers and structural breaks in European carbon prices 2005-2007," Energy Policy, Elsevier, vol. 36(2), pages 787-797, February.
    38. Maria Mansanet-Bataller & Angel Pardo & Enric Valor, 2007. "CO2 Prices, Energy and Weather," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 73-92.
    39. He, Ling-Yun & Fan, Ying & Wei, Yi-Ming, 2009. "Impact of speculator's expectations of returns and time scales of investment on crude oil price behaviors," Energy Economics, Elsevier, vol. 31(1), pages 77-84, January.
    40. Ling‐Yun He & Wen‐Si Xie, 2012. "Who has the final say?," China Agricultural Economic Review, Emerald Group Publishing Limited, vol. 4(3), pages 379-390, August.
    41. Gao-Feng Gu & Wei-Xing Zhou, 2010. "Detrending moving average algorithm for multifractals," Papers 1005.0877, arXiv.org, revised Jun 2010.
    42. Daskalakis, George & Markellos, Raphael N., 2009. "Are electricity risk premia affected by emission allowance prices? Evidence from the EEX, Nord Pool and Powernext," Energy Policy, Elsevier, vol. 37(7), pages 2594-2604, July.
    43. Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2007. "Scale invariant distribution and multifractality of volatility multipliers in stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 381(C), pages 343-350.
    44. Nicolas Koch, 2014. "Dynamic linkages among carbon, energy and financial markets: a smooth transition approach," Applied Economics, Taylor & Francis Journals, vol. 46(7), pages 715-729, March.
    45. Turiel, Antonio & Pérez-Vicente, Conrad J., 2005. "Role of multifractal sources in the analysis of stock market time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(2), pages 475-496.
    46. Cao, Guangxi & Cao, Jie & Xu, Longbing & He, LingYun, 2014. "Detrended cross-correlation analysis approach for assessing asymmetric multifractal detrended cross-correlations and their application to the Chinese financial market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 460-469.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Weijie & Dang, Yaoguo & Gu, Rongbao, 2013. "Efficiency and multifractality analysis of CSI 300 based on multifractal detrending moving average algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1429-1438.
    2. Wang, Dong-Hua & Yu, Xiao-Wen & Suo, Yuan-Yuan, 2012. "Statistical properties of the yuan exchange rate index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(12), pages 3503-3512.
    3. Dutta, Srimonti & Ghosh, Dipak & Chatterjee, Sucharita, 2016. "Multifractal detrended Cross Correlation Analysis of Foreign Exchange and SENSEX fluctuation in Indian perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 188-201.
    4. Wei, Yu & Chen, Wang & Lin, Yu, 2013. "Measuring daily Value-at-Risk of SSEC index: A new approach based on multifractal analysis and extreme value theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2163-2174.
    5. Dutta, Srimonti & Ghosh, Dipak & Samanta, Shukla, 2014. "Multifractal detrended cross-correlation analysis of gold price and SENSEX," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 195-204.
    6. Zhou, Wei-Xing, 2012. "Finite-size effect and the components of multifractality in financial volatility," Chaos, Solitons & Fractals, Elsevier, vol. 45(2), pages 147-155.
    7. Ruan, Qingsong & Zhang, Manqian & Lv, Dayong & Yang, Haiquan, 2018. "SAD and stock returns revisited: Nonlinear analysis based on MF-DCCA and Granger test," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 1009-1022.
    8. Cao, Guangxi & Xu, Longbing & Cao, Jie, 2012. "Multifractal detrended cross-correlations between the Chinese exchange market and stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 4855-4866.
    9. Zhuang, Xiaoyang & Wei, Yu & Zhang, Bangzheng, 2014. "Multifractal detrended cross-correlation analysis of carbon and crude oil markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 399(C), pages 113-125.
    10. Zhang, Xin & Zhu, Yingming & Yang, Liansheng, 2018. "Multifractal detrended cross-correlations between Chinese stock market and three stock markets in The Belt and Road Initiative," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 105-115.
    11. Ruan, Yong-Ping & Zhou, Wei-Xing, 2011. "Long-term correlations and multifractal nature in the intertrade durations of a liquid Chinese stock and its warrant," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(9), pages 1646-1654.
    12. Gao, Xing-Lu & Shao, Ying-Hui & Yang, Yan-Hong & Zhou, Wei-Xing, 2022. "Do the global grain spot markets exhibit multifractal nature?," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    13. Ruan, Qingsong & Bao, Junjie & Zhang, Manqian & Fan, Limin, 2019. "The effects of exchange rate regime reform on RMB markets: A new perspective based on MF-DCCA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 122-134.
    14. Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2008. "Multifractal analysis of Chinese stock volatilities based on the partition function approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(19), pages 4881-4888.
    15. Chen, Wang & Wei, Yu & Lang, Qiaoqi & Lin, Yu & Liu, Maojuan, 2014. "Financial market volatility and contagion effect: A copula–multifractal volatility approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 398(C), pages 289-300.
    16. Shen, Na & Chen, Jiayi, 2023. "Asymmetric multifractal spectrum distribution based on detrending moving average cross-correlation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    17. Fernández-Martínez, M. & Sánchez-Granero, M.A. & Casado Belmonte, M.P. & Trinidad Segovia, J.E., 2020. "A note on power-law cross-correlated processes," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    18. Cao, Guangxi & Han, Yan & Li, Qingchen & Xu, Wei, 2017. "Asymmetric MF-DCCA method based on risk conduction and its application in the Chinese and foreign stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 119-130.
    19. Liu, Li & Wang, Yudong, 2014. "Cross-correlations between spot and futures markets of nonferrous metals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 400(C), pages 20-30.
    20. Wang, Dong-Hua & Suo, Yuan-Yuan & Yu, Xiao-Wen & Lei, Man, 2013. "Price–volume cross-correlation analysis of CSI300 index futures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(5), pages 1172-1179.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:444:y:2016:i:c:p:505-523. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.