IDEAS home Printed from https://ideas.repec.org/p/arx/papers/0801.1710.html
   My bibliography  Save this paper

Multifractal analysis of Chinese stock volatilities based on partition function approach

Author

Listed:
  • Zhi-Qiang Jiang

    (ECUST)

  • Wei-Xing Zhou

    (ECUST)

Abstract

We have performed detailed multifractal analysis on the minutely volatility of two indexes and 1139 stocks in the Chinese stock markets based on the partition function approach. The partition function $\chi_q(s)$ scales as a power law with respect to box size $s$. The scaling exponents $\tau(q)$ form a nonlinear function of $q$. Statistical tests based on bootstrapping show that the extracted multifractal nature is significant at the 1% significance level. The individual securities can be well modeled by the $p$-model in turbulence with $p = 0.40 \pm 0.02$. Based on the idea of ensemble averaging (including quenched and annealed average), we treat each stock exchange as a whole and confirm the existence of multifractal nature in the Chinese stock markets.

Suggested Citation

  • Zhi-Qiang Jiang & Wei-Xing Zhou, 2008. "Multifractal analysis of Chinese stock volatilities based on partition function approach," Papers 0801.1710, arXiv.org, revised Feb 2008.
  • Handle: RePEc:arx:papers:0801.1710
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/0801.1710
    File Function: Latest version
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Gao-Feng Gu & Wei Chen & Wei-Xing Zhou, 2006. "Quantifying bid-ask spreads in the Chinese stock market using limit-order book data: Intraday pattern, probability distribution, long memory, and multifractal nature," Papers physics/0701017, arXiv.org, revised Mar 2007.
    2. Lee, Jae Woo & Eun Lee, Kyoung & Arne Rikvold, Per, 2006. "Multifractal behavior of the Korean stock-market index KOSPI," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 364(C), pages 355-361.
    3. Lee, Kyoung Eun & Lee, Jae Woo, 2007. "Probability distribution function and multiscaling properties in the Korean stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(1), pages 65-70.
    4. Wei, Yu & Huang, Dengshi, 2005. "Multifractal analysis of SSEC in Chinese stock market: A different empirical result from Heng Seng index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(2), pages 497-508.
    5. Turiel, Antonio & Pérez-Vicente, Conrad J., 2003. "Multifractal geometry in stock market time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 322(C), pages 629-649.
    6. Jiang, J. & Ma, K. & Cai, X., 2007. "Non-linear characteristics and long-range correlations in Asian stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 378(2), pages 399-407.
    7. Struzik, Zbigniew R. & Siebes, Arno P.J.M., 2002. "Wavelet transform based multifractal formalism in outlier detection and localisation for financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 309(3), pages 388-402.
    8. Ho, Ding-Shun & Lee, Chung-Kung & Wang, Cheng-Cai & Chuang, Mang, 2004. "Scaling characteristics in the Taiwan stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 332(C), pages 448-460.
    9. Górski, A.Z & Drożdż, S & Speth, J, 2002. "Financial multifractality and its subtleties: an example of DAX," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 496-510.
    10. Wei, Yu & Wang, Peng, 2008. "Forecasting volatility of SSEC in Chinese stock market using multifractal analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(7), pages 1585-1592.
    11. A. Z. Gorski & S. Drozdz & J. Speth, 2002. "Financial multifractality and its subtleties: an example of DAX," Papers cond-mat/0205482, arXiv.org.
    12. Oświe¸cimka, P. & Kwapień, J. & Drożdż, S., 2005. "Multifractality in the stock market: price increments versus waiting times," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 347(C), pages 626-638.
    13. Laurent Calvet & Adlai Fisher, 2002. "Multifractality In Asset Returns: Theory And Evidence," The Review of Economics and Statistics, MIT Press, vol. 84(3), pages 381-406, August.
    14. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    15. Zhi-Qiang Jiang & Liang Guo & Wei-Xing Zhou, 2007. "Endogenous and exogenous dynamics in the fluctuations of capital fluxes: An empirical analysis of the Chinese stock market," Papers physics/0702035, arXiv.org.
    16. Kwapień, J. & Oświe¸cimka, P. & Drożdż, S., 2005. "Components of multifractality in high-frequency stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 350(2), pages 466-474.
    17. Lim, Gyuchang & Kim, SooYong & Lee, Hyoung & Kim, Kyungsik & Lee, Dong-In, 2007. "Multifractal detrended fluctuation analysis of derivative and spot markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 386(1), pages 259-266.
    18. Sun, Xia & Chen, Huiping & Yuan, Yongzhuang & Wu, Ziqin, 2001. "Predictability of multifractal analysis of Hang Seng stock index in Hong Kong," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 301(1), pages 473-482.
    19. Alvarez-Ramirez, Jose & Cisneros, Myriam & Ibarra-Valdez, Carlos & Soriano, Angel, 2002. "Multifractal Hurst analysis of crude oil prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 313(3), pages 651-670.
    20. Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2007. "Scale invariant distribution and multifractality of volatility multipliers in stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 381(C), pages 343-350.
    21. Sun, Xia & Chen, Huiping & Wu, Ziqin & Yuan, Yongzhuang, 2001. "Multifractal analysis of Hang Seng index in Hong Kong stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 291(1), pages 553-562.
    22. Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2008. "Multifractality in stock indexes: Fact or Fiction?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(14), pages 3605-3614.
    23. Kaushik Matia & Yosef Ashkenazy & H. Eugene Stanley, 2003. "Multifractal Properties of Price Fluctuations of Stocks and Commodities," Papers cond-mat/0308012, arXiv.org.
    24. Du, Guoxiong & Ning, Xuanxi, 2008. "Multifractal properties of Chinese stock market in Shanghai," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(1), pages 261-269.
    25. Mehmet Balcilar, 2003. "Multifractality of the Istanbul and Moscow Stock Market Returns," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 39(2), pages 5-46, March.
    26. Yuan, Ying & Zhuang, Xin-tian, 2008. "Multifractal description of stock price index fluctuation using a quadratic function fitting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(2), pages 511-518.
    27. Turiel, Antonio & Pérez-Vicente, Conrad J., 2005. "Role of multifractal sources in the analysis of stock market time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(2), pages 475-496.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:0801.1710. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.