IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v389y2010i18p3828-3836.html
   My bibliography  Save this article

Are developed and emerging agricultural futures markets multifractal? A comparative perspective

Author

Listed:
  • He, Ling-Yun
  • Chen, Shu-Peng

Abstract

Although there are many reports on the empirical evidence of the existence of multifractality in various financial or commodity markets in current literature, few can be found to compare the multifractal properties of emerging and developed economies, especially for agricultural futures markets in those countries (regions). We therefore chose China as the representative of the transition and emerging economies, and USA as the representative of developed ones. We attempt to find the answers to the following questions: (1) Are all those different markets multifractal? (2) What are the dynamical causes for multifractality in those markets (if any)? (3) Are the multifractality strengths in those markets of the transition and emerging economies weaker (or stronger) than those of the developed ones? To answer these questions, Multifractal Detrended Fluctuation Analysis (MF-DFA) are applied to study some of the representative agricultural futures markets in China and USA, namely, wheat, soy meal, soybean and corn. Our results suggest that all the markets of China and USA exhibit multifractal properties except US soybean market, which is much closer to mono-fractal comparing with China’s soybean market. To investigate the sources of multifractality, shuffling and phase randomization procedures are applied to destroy the temporal correlations and non-Gaussian distributions respectively. We found that multifractality can be mainly attributed to the non-Gaussian probability distribution and secondarily to the nonlinear temporal correlation mechanism for all the markets, except US soybean and soy meal, which derives from some other unknown factors. Furthermore, the average of τ(q) are applied to obtain the multifractal spectra of the two markets as a whole. The results show that the width of the multifractal spectrum of US agricultural futures markets is significantly narrower than that of China’s. Based on our findings, we proposed a hypothesis that the strength of multifractality in developed economies may be weaker than that in emerging and transition ones.

Suggested Citation

  • He, Ling-Yun & Chen, Shu-Peng, 2010. "Are developed and emerging agricultural futures markets multifractal? A comparative perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(18), pages 3828-3836.
  • Handle: RePEc:eee:phsmap:v:389:y:2010:i:18:p:3828-3836
    DOI: 10.1016/j.physa.2010.05.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437110004516
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2010.05.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marco Corazza & A.G. Malliaris & Carla Nardelli, 1997. "Searching for fractal structure in agricultural futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 17(4), pages 433-473, June.
    2. Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2008. "Multifractal analysis of Chinese stock volatilities based on the partition function approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(19), pages 4881-4888.
    3. Yuan, Ying & Zhuang, Xin-tian, 2008. "Multifractal description of stock price index fluctuation using a quadratic function fitting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(2), pages 511-518.
    4. Chen, Shu-Peng & He, Ling-Yun, 2010. "Multifractal spectrum analysis of nonlinear dynamical mechanisms in China’s agricultural futures markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(7), pages 1434-1444.
    5. Norouzzadeh, P. & Dullaert, W. & Rahmani, B., 2007. "Anti-correlation and multifractal features of Spain electricity spot market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 380(C), pages 333-342.
    6. Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2008. "Multifractality in stock indexes: Fact or Fiction?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(14), pages 3605-3614.
    7. Gopikrishnan, P. & Plerou, V. & Gabaix, X. & Amaral, L.A.N. & Stanley, H.E., 2001. "Price fluctuations and market activity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 137-143.
    8. Moyano, L.G. & de Souza, J. & Duarte Queirós, S.M., 2006. "Multi-fractal structure of traded volume in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(1), pages 118-121.
    9. Oświe¸cimka, P. & Kwapień, J. & Drożdż, S., 2005. "Multifractality in the stock market: price increments versus waiting times," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 347(C), pages 626-638.
    10. Alvarez-Ramirez, Jose & Alvarez, Jesus & Rodriguez, Eduardo, 2008. "Short-term predictability of crude oil markets: A detrended fluctuation analysis approach," Energy Economics, Elsevier, vol. 30(5), pages 2645-2656, September.
    11. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    12. Barabási, Albert-László & Szépfalusy, Péter & Vicsek, Tamás, 1991. "Multifractal spectra of multi-affine functions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 178(1), pages 17-28.
    13. V. Plerou & P. Gopikrishnan & X. Gabaix & L. A. N. Amaral & H. E. Stanley, 2001. "Price fluctuations, market activity and trading volume," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 262-269.
    14. Ling-Yun He & Ying Fan & Yi-Ming Wei, 2007. "The empirical analysis for fractal features and long-run memory mechanism in petroleum pricing systems," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 27(4), pages 492-502.
    15. Alvarez-Ramirez, Jose & Cisneros, Myriam & Ibarra-Valdez, Carlos & Soriano, Angel, 2002. "Multifractal Hurst analysis of crude oil prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 313(3), pages 651-670.
    16. Kaushik Matia & Yosef Ashkenazy & H. Eugene Stanley, 2003. "Multifractal Properties of Price Fluctuations of Stocks and Commodities," Papers cond-mat/0308012, arXiv.org.
    17. Kwapień, J. & Oświe¸cimka, P. & Drożdż, S., 2005. "Components of multifractality in high-frequency stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 350(2), pages 466-474.
    18. Lim, Gyuchang & Kim, SooYong & Lee, Hyoung & Kim, Kyungsik & Lee, Dong-In, 2007. "Multifractal detrended fluctuation analysis of derivative and spot markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 386(1), pages 259-266.
    19. Adrangi, Bahram & Chatrath, Arjun & Dhanda, Kanwalroop Kathy & Raffiee, Kambiz, 2001. "Chaos in oil prices? Evidence from futures markets," Energy Economics, Elsevier, vol. 23(4), pages 405-425, July.
    20. Matos, José A.O. & Gama, Sílvio M.A. & Ruskin, Heather J. & Sharkasi, Adel Al & Crane, Martin, 2008. "Time and scale Hurst exponent analysis for financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(15), pages 3910-3915.
    21. Norouzzadeh, P. & Rahmani, B., 2006. "A multifractal detrended fluctuation description of Iranian rial–US dollar exchange rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 328-336.
    22. oh, Gabjin & Kim, Seunghwan & Eom, Cheoljun, 2008. "Long-term memory and volatility clustering in high-frequency price changes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(5), pages 1247-1254.
    23. Carbone, A. & Castelli, G. & Stanley, H.E., 2004. "Time-dependent Hurst exponent in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 344(1), pages 267-271.
    24. He, Ling-Yun & Fan, Ying & Wei, Yi-Ming, 2009. "Impact of speculator's expectations of returns and time scales of investment on crude oil price behaviors," Energy Economics, Elsevier, vol. 31(1), pages 77-84, January.
    25. Arianos, Sergio & Carbone, Anna, 2007. "Detrending moving average algorithm: A closed-form approximation of the scaling law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(1), pages 9-15.
    26. Carbone, Anna & Stanley, H.Eugene, 2004. "Directed self-organized critical patterns emerging from fractional Brownian paths," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 340(4), pages 544-551.
    27. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    28. Kumar, Sunil & Deo, Nivedita, 2009. "Multifractal properties of the Indian financial market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(8), pages 1593-1602.
    29. Du, Guoxiong & Ning, Xuanxi, 2008. "Multifractal properties of Chinese stock market in Shanghai," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(1), pages 261-269.
    30. Chatrath, Arjun & Adrangi, Bahram & Dhanda, Kanwalroop Kathy, 2002. "Are commodity prices chaotic?," Agricultural Economics, Blackwell, vol. 27(2), pages 123-137, August.
    31. Zunino, L. & Tabak, B.M. & Figliola, A. & Pérez, D.G. & Garavaglia, M. & Rosso, O.A., 2008. "A multifractal approach for stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(26), pages 6558-6566.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Ling-Yun & Qian, Wen-Bin, 2012. "A Monte Carlo simulation to the performance of the R/S and V/S methods—Statistical revisit and real world application," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(14), pages 3770-3782.
    2. Dutta, Srimonti & Ghosh, Dipak & Chatterjee, Sucharita, 2016. "Multifractal detrended Cross Correlation Analysis of Foreign Exchange and SENSEX fluctuation in Indian perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 188-201.
    3. Zunino, Luciano & Tabak, Benjamin M. & Serinaldi, Francesco & Zanin, Massimiliano & Pérez, Darío G. & Rosso, Osvaldo A., 2011. "Commodity predictability analysis with a permutation information theory approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(5), pages 876-890.
    4. Hongtao Chen & Lianghua Chen, 2015. "Multifractal spectrum analysis of Brent crude oil futures prices volatility in intercontinental exchange," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 38(1/2/3), pages 93-108.
    5. Pavón-Domínguez, P. & Serrano, S. & Jiménez-Hornero, F.J. & Jiménez-Hornero, J.E. & Gutiérrez de Ravé, E. & Ariza-Villaverde, A.B., 2013. "Multifractal detrended fluctuation analysis of sheep livestock prices in origin," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4466-4476.
    6. He, Ling-Yun & Chen, Shu-Peng, 2011. "Multifractal Detrended Cross-Correlation Analysis of agricultural futures markets," Chaos, Solitons & Fractals, Elsevier, vol. 44(6), pages 355-361.
    7. de Araujo, Fernando Henrique Antunes & Bejan, Lucian & Stosic, Borko & Stosic, Tatijana, 2020. "An analysis of Brazilian agricultural commodities using permutation – information theory quantifiers: The influence of food crisis," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    8. Li, Zhihui & Lu, Xinsheng, 2012. "Cross-correlations between agricultural commodity futures markets in the US and China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(15), pages 3930-3941.
    9. Li Wang & Xing-Lu Gao & Wei-Xing Zhou, 2023. "Testing for intrinsic multifractality in the global grain spot market indices: A multifractal detrended fluctuation analysis," Papers 2306.10496, arXiv.org.
    10. Lima, Cristiane Rocha Albuquerque & de Melo, Gabriel Rivas & Stosic, Borko & Stosic, Tatijana, 2019. "Cross-correlations between Brazilian biofuel and food market: Ethanol versus sugar," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 687-693.
    11. Qin, Jing & Lu, Xinsheng & Zhou, Ying & Qu, Ling, 2015. "The effectiveness of China’s RMB exchange rate reforms: An insight from multifractal detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 443-454.
    12. He, Ling-Yun & Chen, Shu-Peng, 2011. "Nonlinear bivariate dependency of price–volume relationships in agricultural commodity futures markets: A perspective from Multifractal Detrended Cross-Correlation Analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(2), pages 297-308.
    13. He, Ling-Yun & Chen, Shu-Peng, 2011. "A new approach to quantify power-law cross-correlation and its application to commodity markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3806-3814.
    14. Chatterjee, Sucharita, 2020. "Analysis of the human gait rhythm in Neurodegenerative disease: A multifractal approach using Multifractal detrended cross correlation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    15. Ruan, Yong-Ping & Zhou, Wei-Xing, 2011. "Long-term correlations and multifractal nature in the intertrade durations of a liquid Chinese stock and its warrant," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(9), pages 1646-1654.
    16. Jia, Zhanliang & Cui, Meilan & Li, Handong, 2012. "Research on the relationship between the multifractality and long memory of realized volatility in the SSECI," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 740-749.
    17. He, Xiaoli & Wang, Hongwu & Du, Ziping, 2014. "The complexity and fractal structures of CSI300 before and after the introduction of CSI300IF," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 76-85.
    18. Chatterjee, Sucharita & Ghosh, Dipak, 2021. "Impact of Global Warming on SENSEX fluctuations — A study based on Multifractal detrended cross correlation analysis between the temperature anomalies and the SENSEX fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    19. Dutta, Srimonti & Ghosh, Dipak & Samanta, Shukla, 2014. "Multifractal detrended cross-correlation analysis of gold price and SENSEX," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 195-204.
    20. Ghosh, Dipak & Dutta, Srimonti & Chakraborty, Sayantan, 2015. "Multifractal Detrended Cross-correlation Analysis of Market Clearing Price of electricity and SENSEX in India," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 434(C), pages 52-59.
    21. Fousekis, Panos & Tzaferi, Dimitra, 2022. "Price multifractality and informational efficiency in the futures markets of the US soybean complex," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 66, pages 68-84.
    22. Gao, Xing-Lu & Shao, Ying-Hui & Yang, Yan-Hong & Zhou, Wei-Xing, 2022. "Do the global grain spot markets exhibit multifractal nature?," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    23. Ji, Qiangbiao & Zhang, Xin & Zhu, Yingming, 2020. "Multifractal analysis of the impact of US–China trade friction on US and China soy futures markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Shu-Peng & He, Ling-Yun, 2010. "Multifractal spectrum analysis of nonlinear dynamical mechanisms in China’s agricultural futures markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(7), pages 1434-1444.
    2. He, Ling-Yun & Chen, Shu-Peng, 2010. "Are crude oil markets multifractal? Evidence from MF-DFA and MF-SSA perspectives," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(16), pages 3218-3229.
    3. Zhou, Wei-Xing, 2012. "Finite-size effect and the components of multifractality in financial volatility," Chaos, Solitons & Fractals, Elsevier, vol. 45(2), pages 147-155.
    4. Akash P. POOJARI & Siva Kiran GUPTHA & G Raghavender RAJU, 2022. "Multifractal analysis of equities. Evidence from the emerging and frontier banking sectors," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania - AGER, vol. 0(3(632), A), pages 61-80, Autumn.
    5. Wang, Yudong & Wu, Chongfeng & Pan, Zhiyuan, 2011. "Multifractal detrending moving average analysis on the US Dollar exchange rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3512-3523.
    6. Ruan, Yong-Ping & Zhou, Wei-Xing, 2011. "Long-term correlations and multifractal nature in the intertrade durations of a liquid Chinese stock and its warrant," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(9), pages 1646-1654.
    7. Zhou, Weijie & Dang, Yaoguo & Gu, Rongbao, 2013. "Efficiency and multifractality analysis of CSI 300 based on multifractal detrending moving average algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1429-1438.
    8. Aslam, Faheem & Aziz, Saqib & Nguyen, Duc Khuong & Mughal, Khurrum S. & Khan, Maaz, 2020. "On the efficiency of foreign exchange markets in times of the COVID-19 pandemic," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    9. Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2008. "Multifractal analysis of Chinese stock volatilities based on the partition function approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(19), pages 4881-4888.
    10. Wang, Dong-Hua & Yu, Xiao-Wen & Suo, Yuan-Yuan, 2012. "Statistical properties of the yuan exchange rate index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(12), pages 3503-3512.
    11. Faheem Aslam & Wahbeeah Mohti & Paulo Ferreira, 2020. "Evidence of Intraday Multifractality in European Stock Markets during the Recent Coronavirus (COVID-19) Outbreak," IJFS, MDPI, vol. 8(2), pages 1-13, May.
    12. Gao, Xing-Lu & Shao, Ying-Hui & Yang, Yan-Hong & Zhou, Wei-Xing, 2022. "Do the global grain spot markets exhibit multifractal nature?," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    13. He, Ling-Yun & Qian, Wen-Bin, 2012. "A Monte Carlo simulation to the performance of the R/S and V/S methods—Statistical revisit and real world application," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(14), pages 3770-3782.
    14. Cao, Guangxi & Cao, Jie & Xu, Longbing, 2013. "Asymmetric multifractal scaling behavior in the Chinese stock market: Based on asymmetric MF-DFA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 797-807.
    15. Hasan, Rashid & Mohammad, Salim M., 2015. "Multifractal analysis of Asian markets during 2007–2008 financial crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 746-761.
    16. Tetsuya Takaishi, 2017. "Statistical properties and multifractality of Bitcoin," Papers 1707.07618, arXiv.org, revised May 2018.
    17. Takaishi, Tetsuya, 2018. "Statistical properties and multifractality of Bitcoin," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 507-519.
    18. Li Wang & Xing-Lu Gao & Wei-Xing Zhou, 2023. "Testing for intrinsic multifractality in the global grain spot market indices: A multifractal detrended fluctuation analysis," Papers 2306.10496, arXiv.org.
    19. Wei, Yu & Chen, Wang & Lin, Yu, 2013. "Measuring daily Value-at-Risk of SSEC index: A new approach based on multifractal analysis and extreme value theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2163-2174.
    20. Ling-Yun He, 2010. "Is Price Behavior Scaling and Multiscaling in a Dealer Market? Perspectives from Multi-Agent Based Experiments," Computational Economics, Springer;Society for Computational Economics, vol. 36(3), pages 263-282, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:389:y:2010:i:18:p:3828-3836. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.