IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v389y2010i4p843-853.html
   My bibliography  Save this article

Binary choices in small and large groups: A unified model

Author

Listed:
  • Bischi, Gian-Italo
  • Merlone, Ugo

Abstract

Two different ways to model the diffusion of alternative choices within a population of individuals in the presence of social externalities are known in the literature. While Galam’s model of rumors spreading considers a majority rule for interactions in several groups, Schelling considers individuals interacting in one large group, with payoff functions that describe how collective choices influence individual preferences. We incorporate these two approaches into a unified general discrete-time dynamic model for studying individual interactions in variously sized groups. We first illustrate how the two original models can be obtained as particular cases of the more general model we propose, then we show how several other situations can be analyzed. The model we propose goes beyond a theoretical exercise as it allows modeling situations which are relevant in economic and social systems. We consider also other aspects such as the propensity to switch choices and the behavioral momentum, and show how they may affect the dynamics of the whole population.

Suggested Citation

  • Bischi, Gian-Italo & Merlone, Ugo, 2010. "Binary choices in small and large groups: A unified model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(4), pages 843-853.
  • Handle: RePEc:eee:phsmap:v:389:y:2010:i:4:p:843-853 DOI: 10.1016/j.physa.2009.10.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437109008590
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Jijun & Szilagyi, Miklos N. & Szidarovszky, Ferenc, 2008. "An n-person battle of sexes game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(14), pages 3669-3677.
    2. Gerardine DeSanctis & R. Brent Gallupe, 1987. "A Foundation for the Study of Group Decision Support Systems," Management Science, INFORMS, vol. 33(5), pages 589-609, May.
    3. Galam, Serge, 2003. "Modelling rumors: the no plane Pentagon French hoax case," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 320(C), pages 571-580.
    4. Challet, D. & Zhang, Y.-C., 1997. "Emergence of cooperation and organization in an evolutionary game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 246(3), pages 407-418.
    5. Zhao, Jijun & Szilagyi, Miklos N. & Szidarovszky, Ferenc, 2008. "n-person Battle of sexes games—a simulation study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(14), pages 3678-3688.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gardini, Laura & Merlone, Ugo & Tramontana, Fabio, 2011. "Inertia in binary choices: Continuity breaking and big-bang bifurcation points," Journal of Economic Behavior & Organization, Elsevier, vol. 80(1), pages 153-167.
    2. Cavalli, Fausto & Naimzada, Ahmad & Pireddu, Marina, 2016. "A family of models for Schelling binary choices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 276-296.
    3. Dal Forno, Arianna & Merlone, Ugo, 2013. "Border-collision bifurcations in a model of Braess paradox," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 87(C), pages 1-18.
    4. repec:spr:joevec:v:27:y:2017:i:5:d:10.1007_s00191-017-0526-4 is not listed on IDEAS
    5. Merlone, U. & Radi, D., 2014. "Reaching consensus on rumors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 260-271.
    6. Qian, Shen & Liu, Yijun & Galam, Serge, 2015. "Activeness as a key to counter democratic balance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 187-196.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:389:y:2010:i:4:p:843-853. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.