IDEAS home Printed from
   My bibliography  Save this article

Unbounded probabilistic sophistication


  • Kopylov, Igor


I extend Machina and Schmeidler's (1992) model of probabilistic sophistication to unbounded uncertain prospects (acts) and derive risk preferences over the induced probability distributions (lotteries) with unbounded support. For example, risk preferences can be derived over normal, exponential, and Poisson families of probability distributions. My extension uses a version of Arrow's (1970) Monotone Continuity, which implies countable additivity for subjective beliefs and a novel property of tail-continuity for the revealed risk preferences. On the other hand, I do not assume P6 (Small Event Continuity) that is used both by Savage (1954) and Machina-Schmeidler.

Suggested Citation

  • Kopylov, Igor, 2010. "Unbounded probabilistic sophistication," Mathematical Social Sciences, Elsevier, vol. 60(2), pages 113-118, September.
  • Handle: RePEc:eee:matsoc:v:60:y:2010:i:2:p:113-118

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Sarin, Rakesh & Wakker, Peter P., 2000. "Cumulative dominance and probabilistic sophistication," Mathematical Social Sciences, Elsevier, vol. 40(2), pages 191-196, September.
    2. Grant, Simon, 1995. "Subjective Probability without Monotonicity: Or How Machina's Mom May Also Be Probabilistically Sophisticated," Econometrica, Econometric Society, vol. 63(1), pages 159-189, January.
    3. Alain Chateauneuf & Fabio Maccheroni & Massimo Marinacci & Jean-Marc Tallon, 2005. "Monotone continuous multiple priors," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 26(4), pages 973-982, November.
    4. Massimo Marinacci, 2002. "Probabilistic Sophistication and Multiple Priors," Econometrica, Econometric Society, vol. 70(2), pages 755-764, March.
    5. Kopylov, Igor, 2010. "Simple axioms for countably additive subjective probability," Journal of Mathematical Economics, Elsevier, vol. 46(5), pages 867-876, September.
    6. Chew Soo Hong & Jacob S. Sagi, 2006. "Event Exchangeability: Probabilistic Sophistication Without Continuity or Monotonicity," Econometrica, Econometric Society, vol. 74(3), pages 771-786, May.
    7. Machina, Mark J & Schmeidler, David, 1992. "A More Robust Definition of Subjective Probability," Econometrica, Econometric Society, vol. 60(4), pages 745-780, July.
    8. Peter Wakker, 1993. "Savage's Axioms Usually Imply Violation of Strict Stochastic Dominance," Review of Economic Studies, Oxford University Press, vol. 60(2), pages 487-493.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Kopylov, Igor, 2016. "Canonical utility functions and continuous preference extensions," Journal of Mathematical Economics, Elsevier, vol. 67(C), pages 32-37.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matsoc:v:60:y:2010:i:2:p:113-118. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.