IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

A core of voting games with improved foresight

Listed author(s):
  • Diffo Lambo, Lawrence
  • Tchantcho, Bertrand
  • Moulen, Joël
Registered author(s):

    This paper considers voting situations in which the vote takes place iteratively. If a coalition replaces the status quo a with a contestant b, then b becomes the new status quo, and the vote goes on until a candidate is reached that no winning coalition is willing to replace. It is well known that the core, that is, the set of undominated alternatives, may be empty. To alleviate this problem, Rubinstein [Rubinstein, A., 1980. Stability of decision systems under majority rule. Journal of Economic Theory 23, 150-159] assumes that voters look forward one vote before deciding to replace an alternative by a new one. They will not do so if the new status quo is going to be replaced by a third that is less interesting than the first. The stability set, that is, the set of undominated alternatives under this behavior, is always non-empty when preferences are strict. However, this is not necessarily the case when voters' indifference is allowed. Le Breton and Salles [Le Breton, M., Salles, M., 1990. The stability set of voting games: Classification and generecity results. International Journal of Game Theory 19, 111-127], Li [Li, S., 1993. Stability of voting games. Social Choice and Welfare 10, 51-56] and Martin [Martin, M., 1998. Quota games and stability set of order d. Economic Letters 59, 145-151] extend the sophistication of the voters by having them look d votes forward along the iterative process. For d sufficiently large, the resulting set of undominated alternatives is always non-empty even if indifference is allowed. We show that it may be unduly large. Next, by assuming that other voters along a chain of votes are also rational, that is, they also look forward to make sure that the votes taking place later on will not lead to a worst issue for them, we are able to reduce the size of this set while insuring its non-emptiness. Finally, we show that a vote with sufficient foresight satisfies a no-regret property, contrarily to the classical core and the stability set.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Mathematical Social Sciences.

    Volume (Year): 58 (2009)
    Issue (Month): 2 (September)
    Pages: 214-225

    in new window

    Handle: RePEc:eee:matsoc:v:58:y:2009:i:2:p:214-225
    Contact details of provider: Web page:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. John C. Harsanyi, 1974. "An Equilibrium-Point Interpretation of Stable Sets and a Proposed Alternative Definition," Management Science, INFORMS, vol. 20(11), pages 1472-1495, July.
    2. Chakravorti, Bhaskar, 1999. "Far-Sightedness and the Voting Paradox," Journal of Economic Theory, Elsevier, vol. 84(2), pages 216-226, February.
    3. Mathieu Martin, 2000. "A note on the non-emptiness of the stability set," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 17(3), pages 559-565.
    4. Andjiga, Nicolas Gabriel & Moyouwou, Issofa, 2006. "A note on the non-emptiness of the stability set when individual preferences are weak orders," Mathematical Social Sciences, Elsevier, vol. 52(1), pages 67-76, July.
    5. Rubinstein, Ariel, 1980. "Stability of decision systems under majority rule," Journal of Economic Theory, Elsevier, vol. 23(2), pages 150-159, October.
    6. Martin, Mathieu & Merlin, Vincent, 2002. "The stability set as a social choice correspondence," Mathematical Social Sciences, Elsevier, vol. 44(1), pages 91-113, September.
    7. Martin, M., 1998. "Quota games and stability set of order d," Economics Letters, Elsevier, vol. 59(2), pages 145-151, May.
    8. Roland Pongou & Lawrence Diffo Lambo & Bertrand Tchantcho, 2008. "Cooperation, stability and social welfare under majority rule," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 35(3), pages 555-574, June.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:matsoc:v:58:y:2009:i:2:p:214-225. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.