IDEAS home Printed from https://ideas.repec.org/a/eee/oprepe/v1y2014i1p42-49.html
   My bibliography  Save this article

Power theories for multi-choice organizations and political rules: Rank-order equivalence

Author

Listed:
  • Pongou, Roland
  • Tchantcho, Bertrand
  • Tedjeugang, Narcisse

Abstract

Voting power theories measure the ability of voters to influence the outcome of an election under a given voting rule. In general, each theory gives a different evaluation of power, raising the question of their appropriateness, and calling for the need to identify classes of rules for which different theories agree. We study the ordinal equivalence of the generalizations of the classical power concepts–the influence relation, the Banzhaf power index, and the Shapley–Shubik power index–to multi-choice organizations and political rules. Under such rules, each voter chooses a level of support for a social goal from a finite list of options, and these individual choices are aggregated to determine the collective level of support for this goal. We show that the power theories analyzed do not always yield the same power relationships among voters. Thanks to necessary and/or sufficient conditions, we identify a large class of rules for which ordinal equivalence obtains. Furthermore, we prove that ordinal equivalence obtains for all linear rules allowing a fixed number of individual approval levels if and only if that number does not exceed three. Our findings generalize all the previous results on the ordinal equivalence of the classical power theories, and show that the condition of linearity found to be necessary and sufficient for ordinal equivalence to obtain when voters have at most three options to choose from is no longer sufficient when they can choose from a list of four or more options.

Suggested Citation

  • Pongou, Roland & Tchantcho, Bertrand & Tedjeugang, Narcisse, 2014. "Power theories for multi-choice organizations and political rules: Rank-order equivalence," Operations Research Perspectives, Elsevier, vol. 1(1), pages 42-49.
  • Handle: RePEc:eee:oprepe:v:1:y:2014:i:1:p:42-49
    DOI: 10.1016/j.orp.2014.06.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2214716014000062
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Laruelle,Annick & Valenciano,Federico, 2011. "Voting and Collective Decision-Making," Cambridge Books, Cambridge University Press, number 9780521182638, October.
    2. Michel Grabisch & Agnieszka Rusinowska, 2010. "A model of influence with an ordered set of possible actions," Theory and Decision, Springer, vol. 69(4), pages 635-656, October.
    3. Dreyer, Jacob S & Schotter, Andrew, 1980. "Power Relationships in the International Monetary Fund: The Consequences of Quota Changes," The Review of Economics and Statistics, MIT Press, vol. 62(1), pages 97-106, February.
    4. Salvador Barbera & Matthew O. Jackson, 2004. "Choosing How to Choose: Self-Stable Majority Rules and Constitutions," The Quarterly Journal of Economics, Oxford University Press, vol. 119(3), pages 1011-1048.
    5. Roland Pongou & Bertrand Tchantcho & Lawrence Diffo Lambo, 2011. "Political influence in multi-choice institutions: cyclicity, anonymity, and transitivity," Theory and Decision, Springer, vol. 70(2), pages 157-178, February.
    6. Dennis Leech, 2003. "Computing Power Indices for Large Voting Games," Management Science, INFORMS, vol. 49(6), pages 831-837, June.
    7. Bertrand Tchantcho & Lawrence Diffo Lambo & Roland Pongou & Joël Moulen, 2010. "On the equilibrium of voting games with abstention and several levels of approval," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 34(3), pages 379-396, March.
    8. Dennis Leech, 1988. "The Relationship Between Shareholding Concentration and Shareholder Voting Power in British Companies: A Study of the Application of Power Indices for Simple Games," Management Science, INFORMS, vol. 34(4), pages 509-527, April.
    9. Roland Pongou & Lawrence Diffo Lambo & Bertrand Tchantcho, 2008. "Cooperation, stability and social welfare under majority rule," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 35(3), pages 555-574, June.
    10. Freixas, Josep & Zwicker, William S., 2009. "Anonymous yes-no voting with abstention and multiple levels of approval," Games and Economic Behavior, Elsevier, vol. 67(2), pages 428-444, November.
    11. Tchantcho, Bertrand & Lambo, Lawrence Diffo & Pongou, Roland & Engoulou, Bertrand Mbama, 2008. "Voters' power in voting games with abstention: Influence relation and ordinal equivalence of power theories," Games and Economic Behavior, Elsevier, vol. 64(1), pages 335-350, September.
    12. Josep Freixas, 2010. "On ordinal equivalence of the Shapley and Banzhaf values for cooperative games," International Journal of Game Theory, Springer;Game Theory Society, vol. 39(4), pages 513-527, October.
    13. Parker, Cameron, 2012. "The influence relation for ternary voting games," Games and Economic Behavior, Elsevier, vol. 75(2), pages 867-881.
    14. Cook, Wade D., 2006. "Distance-based and ad hoc consensus models in ordinal preference ranking," European Journal of Operational Research, Elsevier, vol. 172(2), pages 369-385, July.
    15. Freixas, Josep & Tchantcho, Bertrand & Tedjeugang, Narcisse, 2014. "Achievable hierarchies in voting games with abstention," European Journal of Operational Research, Elsevier, vol. 236(1), pages 254-260.
    16. Obata, Tsuneshi & Ishii, Hiroaki, 2003. "A method for discriminating efficient candidates with ranked voting data," European Journal of Operational Research, Elsevier, vol. 151(1), pages 233-237, November.
    17. Hsiao Chih-Ru & Raghavan T. E. S., 1993. "Shapley Value for Multichoice Cooperative Games, I," Games and Economic Behavior, Elsevier, vol. 5(2), pages 240-256, April.
    18. Freixas, Josep & Marciniak, Dorota & Pons, Montserrat, 2012. "On the ordinal equivalence of the Johnston, Banzhaf and Shapley power indices," European Journal of Operational Research, Elsevier, vol. 216(2), pages 367-375.
    19. Roth, Alvin E., 1977. "Utility functions for simple games," Journal of Economic Theory, Elsevier, vol. 16(2), pages 481-489, December.
    20. Josep Freixas & William S. Zwicker, 2003. "Weighted voting, abstention, and multiple levels of approval," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 21(3), pages 399-431, December.
    21. Rubinstein, Ariel, 1980. "Stability of decision systems under majority rule," Journal of Economic Theory, Elsevier, vol. 23(2), pages 150-159, October.
    22. Alonso-Meijide, J.M. & Bilbao, J.M. & Casas-Méndez, B. & Fernández, J.R., 2009. "Weighted multiple majority games with unions: Generating functions and applications to the European Union," European Journal of Operational Research, Elsevier, vol. 198(2), pages 530-544, October.
    23. Guemmegne, Juliette T. & Pongou, Roland, 2014. "A policy-based rationalization of collective rules: Dimensionality, specialized houses, and decentralized authority," Journal of Mathematical Economics, Elsevier, vol. 52(C), pages 182-193.
    24. Lawrence Diffo Lambo & Joël Moulen, 2002. "Ordinal equivalence of power notions in voting games," Theory and Decision, Springer, vol. 53(4), pages 313-325, December.
    25. Momo Kenfack, Joseph Armel & Pongou, Roland & Tchantcho, Bertrand, 2014. "The stability of decision making in committees: The one-core," Economics Letters, Elsevier, vol. 122(3), pages 390-395.
    26. Sueyoshi, Toshiyuki & Shang, Jennifer & Chiang, Wen-Chyuan, 2009. "A decision support framework for internal audit prioritization in a rental car company: A combined use between DEA and AHP," European Journal of Operational Research, Elsevier, vol. 199(1), pages 219-231, November.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:oprepe:v:1:y:2014:i:1:p:42-49. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.journals.elsevier.com/operations-research-perspectives .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.