IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Strategic interaction and dynamics under endogenous time preference

  • Camacho, Carmen
  • Saglam, Cagri
  • Turan, Agah

This paper presents a strategic growth model with endogenous time preference. Due to the potential lack of concavity and the differentiability of the value functions associated with each agent’s problem, we employ the theory of monotone comparative statics and supermodular games based on order and monotonicity properties on lattices. In particular, we provide the sufficient conditions of supermodularity for dynamic games with open-loop strategies based on two fundamental elements: the ability to order elements in the strategy space of the agents and the strategic complementarity which implies upward sloping best responses. The supermodular game structure of the model lets us provide the existence and the monotonicity results on the greatest and the least equilibria. We sharpen these results by showing the differentiability of the value function and the uniqueness of the best response correspondences almost everywhere and show that the stationary state Nash equilibria tend to be symmetric. Finally, we numerically analyze to what extent the strategic complementarity inherent in agents’ strategies can alter the convergence results that could have emerged under a single agent optimal growth model. In particular, we show that the initially rich can pull the poor out of the poverty trap even when sustaining a higher level of steady state capital stock for itself.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/pii/S0304406813000463
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Journal of Mathematical Economics.

Volume (Year): 49 (2013)
Issue (Month): 4 ()
Pages: 291-301

as
in new window

Handle: RePEc:eee:mateco:v:49:y:2013:i:4:p:291-301
Contact details of provider: Web page: http://www.elsevier.com/locate/jmateco

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Azariadis, Costas & Stachurski, John, 2005. "Poverty Traps," Handbook of Economic Growth, in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 1, chapter 5 Elsevier.
  2. Michael Stern, 2006. "Endogenous time preference and optimal growth," Economic Theory, Springer, vol. 29(1), pages 49-70, September.
  3. Dechert, W. Davis & Nishimura, Kazuo, 1983. "A complete characterization of optimal growth paths in an aggregated model with a non-concave production function," Journal of Economic Theory, Elsevier, vol. 31(2), pages 332-354, December.
  4. Benveniste, L M & Scheinkman, J A, 1979. "On the Differentiability of the Value Function in Dynamic Models of Economics," Econometrica, Econometric Society, vol. 47(3), pages 727-32, May.
  5. Dana, Rose-Anne & Le Van, Cuong, 2003. "Dynamic Programming in Economics," Economics Papers from University Paris Dauphine 123456789/416, Paris Dauphine University.
  6. Schumacher, Ingmar, 2011. "Endogenous discounting and the domain of the felicity function," Economic Modelling, Elsevier, vol. 28(1-2), pages 574-581, January.
  7. Barro, Robert J & Sala-i-Martin, Xavier, 1992. "Convergence," Journal of Political Economy, University of Chicago Press, vol. 100(2), pages 223-51, April.
  8. Vives, Xavier, 2005. "Games with strategic complementarities: New applications to industrial organization," International Journal of Industrial Organization, Elsevier, vol. 23(7-8), pages 625-637, September.
  9. Dana, Rose-Anne & Le Van, Cuong, 2003. "Dynamic Programming in Economics," Economics Papers from University Paris Dauphine 123456789/13605, Paris Dauphine University.
  10. repec:hal:journl:halshs-00639731 is not listed on IDEAS
  11. Sundaram, Rangarajan K., 1989. "Perfect equilibrium in non-randomized strategies in a class of symmetric dynamic games," Journal of Economic Theory, Elsevier, vol. 47(1), pages 153-177, February.
  12. Robert J. Barro & Xavier Sala-i-Martin, 1991. "Convergence across States and Regions," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 22(1), pages 107-182.
  13. Becker, Gary S & Mulligan, Casey B, 1997. "The Endogenous Determination of Time Preference," The Quarterly Journal of Economics, MIT Press, vol. 112(3), pages 729-58, August.
  14. Quah, Danny T, 1996. " Convergence Empirics across Economies with (Some) Capital Mobility," Journal of Economic Growth, Springer, vol. 1(1), pages 95-124, March.
  15. Rabah Amir, 2005. "Supermodularity and Complementarity in Economics: An Elementary Survey," Southern Economic Journal, Southern Economic Association, vol. 71(3), pages 636-660, January.
  16. Amir, Rabah & Mirman, Leonard J & Perkins, William R, 1991. "One-Sector Nonclassical Optimal Growth: Optimality Conditions and Comparative Dynamics," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 32(3), pages 625-44, August.
  17. Araujo, A, 1991. "The Once but Not Twice Differentiability of the Policy Function," Econometrica, Econometric Society, vol. 59(5), pages 1383-93, September.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:mateco:v:49:y:2013:i:4:p:291-301. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.