IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Existence, optimality and dynamics of equilibria with endogenous time preference

  • Erol, Selman
  • Le Van, Cuong
  • Saglam, Cagri

Abstract This paper studies the dynamic implications of the endogenous rate of time preference depending on the stock of capital, in a one-sector growth model. The planner's problem is presented and the optimal paths are characterized. We prove that there exists a critical value of initial stock, in the vicinity of which, small differences lead to permanent differences in the optimal path. Indeed, we show that a development trap can arise even under a strictly convex technology. In contrast with the early contributions that consider recursive preferences, the critical stock is not an unstable steady state so that if an economy starts at this stock, an indeterminacy will emerge. We also show that even under a convex-concave technology, the optimal path can exhibit global convergence to a unique stationary point. The multipliers system associated with an optimal path is proven to be the supporting price system of a competitive equilibrium under externality and detailed results concerning the properties of optimal (equilibrium) paths are provided. We show that the model exhibits globally monotone capital sequences yielding a richer set of potential dynamics than the classic model with exogenous discounting.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/pii/S0304406811000103
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Journal of Mathematical Economics.

Volume (Year): 47 (2011)
Issue (Month): 2 (March)
Pages: 170-179

as
in new window

Handle: RePEc:eee:mateco:v:47:y:2011:i:2:p:170-179
Contact details of provider: Web page: http://www.elsevier.com/locate/jmateco

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Rolf Mantel, 1998. "Optimal Economic growth with recursive preferences: decreasing rate of time preference," Estudios de Economia, University of Chile, Department of Economics, vol. 25(2 Year 19), pages 161-178, December.
  2. Andrew A. Samwick, 1997. "Discount Rate Heterogeneity and Social Security Reform," NBER Working Papers 6219, National Bureau of Economic Research, Inc.
  3. Lucas, Robert Jr. & Stokey, Nancy L., 1984. "Optimal growth with many consumers," Journal of Economic Theory, Elsevier, vol. 32(1), pages 139-171, February.
  4. Iwai, Katsuhito, 1972. "Optimal economic growth and stationary ordinal utility --A fisherian approach," Journal of Economic Theory, Elsevier, vol. 5(1), pages 121-151, August.
  5. Duran, Jorge & Le Van, Cuong, 2000. "A simple proof of existence of equilibrium in a one sector growth modelp with bounded or unbounded returns from below," Discussion Papers (IRES - Institut de Recherches Economiques et Sociales) 2000025, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).
  6. Askenazy, Philippe & Le Van, 1997. "A model of optimal growth strategy," CEPREMAP Working Papers (Couverture Orange) 9707, CEPREMAP.
  7. Quah, Danny T, 1996. " Convergence Empirics across Economies with (Some) Capital Mobility," Journal of Economic Growth, Springer, vol. 1(1), pages 95-124, March.
  8. Epstein, Larry G., 1987. "A simple dynamic general equilibrium model," Journal of Economic Theory, Elsevier, vol. 41(1), pages 68-95, February.
  9. Kazuo Nishimura & Alain Venditti, 2006. "Indeterminacy in discrete-time infinite-horizon models," Working Papers halshs-00410763, HAL.
  10. Dana, Rose-Anne & Le Van, Cuong, 2003. "Dynamic Programming in Economics," Economics Papers from University Paris Dauphine 123456789/416, Paris Dauphine University.
  11. Das, Mausumi, 2003. "Optimal growth with decreasing marginal impatience," Journal of Economic Dynamics and Control, Elsevier, vol. 27(10), pages 1881-1898, August.
  12. Dana, Rose-Anne & Le Van, Cuong, 2003. "Dynamic Programming in Economics," Economics Papers from University Paris Dauphine 123456789/13605, Paris Dauphine University.
  13. Dur n, Jorge & Le Van, Cuong, 2003. "Simple Proof Of Existence Of Equilibrium In A One-Sector Growth Model With Bounded Or Unbounded Returns From Below," Macroeconomic Dynamics, Cambridge University Press, vol. 7(03), pages 317-332, June.
  14. Benhabib, Jess & Farmer, Roger E.A., 1996. "Indeterminacy and Sector-Specific Externalities," Working Papers 96-12, C.V. Starr Center for Applied Economics, New York University.
  15. Michael Stern, 2006. "Endogenous time preference and optimal growth," Economic Theory, Springer, vol. 29(1), pages 49-70, September.
  16. Dechert, W. Davis & Nishimura, Kazuo, 1983. "A complete characterization of optimal growth paths in an aggregated model with a non-concave production function," Journal of Economic Theory, Elsevier, vol. 31(2), pages 332-354, December.
  17. Robert J. Barro & Xavier Sala-i-Martin, 1991. "Convergence across States and Regions," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 22(1), pages 107-182.
  18. Maurice Obstfeld, 1989. "Intertemporal Dependence, Impatience, and Dynamics," NBER Working Papers 3028, National Bureau of Economic Research, Inc.
  19. Araujo, A, 1991. "The Once but Not Twice Differentiability of the Policy Function," Econometrica, Econometric Society, vol. 59(5), pages 1383-93, September.
  20. Skiba, A K, 1978. "Optimal Growth with a Convex-Concave Production Function," Econometrica, Econometric Society, vol. 46(3), pages 527-39, May.
  21. Costas Aariadis & John Stachurski, 2004. "Poverty Traps," Department of Economics - Working Papers Series 913, The University of Melbourne.
    • Azariadis, Costas & Stachurski, John, 2005. "Poverty Traps," Handbook of Economic Growth, in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 1, chapter 5 Elsevier.
  22. Majumdar, Mukul & Mitra, Tapan, 1982. "Intertemporal allocation with a non-convex technology: The aggregative framework," Journal of Economic Theory, Elsevier, vol. 27(1), pages 101-136, June.
  23. Barro, Robert J & Sala-i-Martin, Xavier, 1992. "Convergence," Journal of Political Economy, University of Chicago Press, vol. 100(2), pages 223-51, April.
  24. Glenn W. Harrison & Morten I. Lau & Melonie B. Williams, 2001. "Estimating Individual Discount Rates in Denmark: A Field Experiment," NCEE Working Paper Series 200102, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Nov 2001.
  25. Amir, Rabah & Mirman, Leonard J & Perkins, William R, 1991. "One-Sector Nonclassical Optimal Growth: Optimality Conditions and Comparative Dynamics," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 32(3), pages 625-44, August.
  26. Becker, Gary S & Mulligan, Casey B, 1997. "The Endogenous Determination of Time Preference," The Quarterly Journal of Economics, MIT Press, vol. 112(3), pages 729-58, August.
  27. Shane Frederick & George Loewenstein & Ted O'Donoghue, 2002. "Time Discounting and Time Preference: A Critical Review," Journal of Economic Literature, American Economic Association, vol. 40(2), pages 351-401, June.
  28. Lawrance, Emily C, 1991. "Poverty and the Rate of Time Preference: Evidence from Panel Data," Journal of Political Economy, University of Chicago Press, vol. 99(1), pages 54-77, February.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:mateco:v:47:y:2011:i:2:p:170-179. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.