IDEAS home Printed from https://ideas.repec.org/a/eee/juecon/v122y2021ics0094119020300899.html
   My bibliography  Save this article

The congestion costs of Uber and Lyft

Author

Listed:
  • Tarduno, Matthew

Abstract

I study the impact of transportation network companies (TNC) on traffic delays using a natural experiment created by the abrupt departure of Uber and Lyft from Austin, Texas. Applying difference in differences and regression discontinuity specifications to high-frequency traffic data, I estimate that Uber and Lyft together decreased daytime traffic speeds in Austin by roughly 2.3%. Using Austin-specific measures of the value of travel time, I translate these slowdowns to estimates of citywide congestion costs that range from $33 to $52 million annually. Back of the envelope calculations imply that these costs are similar in magnitude to the consumer surplus provided by TNCs in Austin. Together these results suggest that while TNCs may impose modest travel time externalities, restricting or taxing TNC activity is unlikely to generate large net welfare gains through reduced congestion.

Suggested Citation

  • Tarduno, Matthew, 2021. "The congestion costs of Uber and Lyft," Journal of Urban Economics, Elsevier, vol. 122(C).
  • Handle: RePEc:eee:juecon:v:122:y:2021:i:c:s0094119020300899
    DOI: 10.1016/j.jue.2020.103318
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0094119020300899
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jue.2020.103318?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nicholas Buchholz & Laura Doval & Jakub Kastl & Filip Matějka & Tobias Salz, 2020. "Personalized Pricing and the Value of Time: Evidence from Auctioned Cab Rides," NBER Working Papers 27087, National Bureau of Economic Research, Inc.
    2. Anderson, Michael L. & Lu, Fangwen & Zhang, Yiran & Yang, Jun & Qin, Ping, 2016. "Superstitions, street traffic, and subjective well-being," Journal of Public Economics, Elsevier, vol. 142(C), pages 1-10.
    3. Prud'homme, Rémy & Bocarejo, Juan Pablo, 2005. "The London congestion charge: a tentative economic appraisal," Transport Policy, Elsevier, vol. 12(3), pages 279-287, May.
    4. Jonathan Leape, 2006. "The London Congestion Charge," Journal of Economic Perspectives, American Economic Association, vol. 20(4), pages 157-176, Fall.
    5. Peter A. Diamond, 1973. "Consumption Externalities and Imperfect Corrective Pricing," Bell Journal of Economics, The RAND Corporation, vol. 4(2), pages 526-538, Autumn.
    6. Judd Cramer & Alan B. Krueger, 2016. "Disruptive Change in the Taxi Business: The Case of Uber," American Economic Review, American Economic Association, vol. 106(5), pages 177-182, May.
    7. Kastl, Jakub & Buchholz, Nicholas & Doval, Laura & Matějka, Filip & Salz, Tobias, 2020. "The Value of Time: Evidence From Auctioned Cab Rides," CEPR Discussion Papers 14666, C.E.P.R. Discussion Papers.
    8. Vickrey, William S, 1969. "Congestion Theory and Transport Investment," American Economic Review, American Economic Association, vol. 59(2), pages 251-260, May.
    9. Janet Currie & Reed Walker, 2011. "Traffic Congestion and Infant Health: Evidence from E-ZPass," American Economic Journal: Applied Economics, American Economic Association, vol. 3(1), pages 65-90, January.
    10. King, David & Manville, Michael & Shoup, Donald, 2007. "The political calculus of congestion pricing," University of California Transportation Center, Working Papers qt9js9z8gz, University of California Transportation Center.
    11. Hall, Jonathan D. & Palsson, Craig & Price, Joseph, 2018. "Is Uber a substitute or complement for public transit?," Journal of Urban Economics, Elsevier, vol. 108(C), pages 36-50.
    12. Christopher R. Knittel & Ryan Sandler, 2018. "The Welfare Impact of Second-Best Uniform-Pigouvian Taxation: Evidence from Transportation," American Economic Journal: Economic Policy, American Economic Association, vol. 10(4), pages 211-242, November.
    13. King, David & Manville, Michael & Shoup, Donald, 2007. "The political calculus of congestion pricing," Transport Policy, Elsevier, vol. 14(2), pages 111-123, March.
    14. Peter Cohen & Robert Hahn & Jonathan Hall & Steven Levitt & Robert Metcalfe, 2016. "Using Big Data to Estimate Consumer Surplus: The Case of Uber," NBER Working Papers 22627, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jindong Pang & Shulin Shen, 2023. "Do ridesharing services cause traffic congestion?," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 56(2), pages 520-552, May.
    2. Vignon, Daniel & Yin, Yafeng & Ke, Jintao, 2023. "Regulating the ride-hailing market in the age of uberization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 169(C).
    3. Wang, Yiyuan & Shen, Qing, 2023. "An economic analysis of incorporating new shared mobility into public transportation provision," Transport Policy, Elsevier, vol. 141(C), pages 263-273.
    4. Jinwon Kim & Jucheol Moon, 2022. "Congestion Costs and Scheduling Preferences of Car Commuters in California: Estimates Using Big Data," Working Papers 2201, Nam Duck-Woo Economic Research Institute, Sogang University (Former Research Institute for Market Economy).
    5. Yuan Liang & Bingjie Yu & Xiaojian Zhang & Yi Lu & Linchuan Yang, 2022. "The Short-term Impact of Congestion Taxes on Ridesourcing Demand and Traffic Congestion: Evidence from Chicago," Papers 2207.01793, arXiv.org, revised Feb 2023.
    6. Liang, Yuan & Yu, Bingjie & Zhang, Xiaojian & Lu, Yi & Yang, Linchuan, 2023. "The short-term impact of congestion taxes on ridesourcing demand and traffic congestion: Evidence from Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 172(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lam, Chungsang Tom & Liu, Meng & Hui, Xiang, 2021. "The geography of ridesharing: A case study on New York City," Information Economics and Policy, Elsevier, vol. 57(C).
    2. Scott Duke Kominers & Alexander Teytelboym & Vincent P Crawford, 2017. "An invitation to market design," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 33(4), pages 541-571.
    3. Christensen, Peter & Osman, Adam, 2021. "The Demand for Mobility: Evidence from an Experiment with Uber Riders," IZA Discussion Papers 14179, Institute of Labor Economics (IZA).
    4. Ren, Tao & Huang, Hai-Jun, 2020. "A competitive system with transit and highway: Revisiting the political feasibility of road pricing," Transport Policy, Elsevier, vol. 88(C), pages 42-56.
    5. Ke, Yue & Gkritza, Konstantina, 2018. "Income and spatial distributional effects of a congestion tax: A hypothetical case of Oregon," Transport Policy, Elsevier, vol. 71(C), pages 28-35.
    6. Berger, Thor & Chen, Chinchih & Frey, Carl Benedikt, 2018. "Drivers of disruption? Estimating the Uber effect," European Economic Review, Elsevier, vol. 110(C), pages 197-210.
    7. Agrawal, David R. & Zhao, Weihua, 2023. "Taxing Uber," Journal of Public Economics, Elsevier, vol. 221(C).
    8. Bencsik, Panka & Lusher, Lester & Taylor, Rebecca L.C., 2023. "Slow Traffic, Fast Food: The Effects of Time Lost on Food Store Choice," IZA Discussion Papers 16036, Institute of Labor Economics (IZA).
    9. Ariel Goldszmidt & John A. List & Robert D. Metcalfe & Ian Muir & V. Kerry Smith & Jenny Wang, 2020. "The Value of Time in the United States: Estimates from Nationwide Natural Field Experiments," NBER Working Papers 28208, National Bureau of Economic Research, Inc.
    10. Maximilian Schäfer & Kevin Ducbao Tran, 2020. "Airbnb, Hotels, and Localized Competition," Discussion Papers of DIW Berlin 1889, DIW Berlin, German Institute for Economic Research.
    11. Xavier Fageda, 2021. "Measuring the impact of ride‐hailing firms on urban congestion: The case of Uber in Europe," Papers in Regional Science, Wiley Blackwell, vol. 100(5), pages 1230-1253, October.
    12. Kyung Sun (Melissa) Rhee & Jinyang Zheng & Youwei Wang & Yong Tan, 2023. "Value of Information Sharing via Ride-Hailing Apps: An Empirical Analysis," Information Systems Research, INFORMS, vol. 34(3), pages 1228-1244, September.
    13. Buchholz, Nicholas & Doval, Laura & Kastl, Jakub & Matejka, Filip & Salz, Tobias, 2020. "The Value of Time: Evidence From Auctioned Cab Rides," CEPR Discussion Papers 14666, C.E.P.R. Discussion Papers.
    14. Raux, Charles & Souche, Stéphanie & Pons, Damien, 2012. "The efficiency of congestion charging: Some lessons from cost–benefit analyses," Research in Transportation Economics, Elsevier, vol. 36(1), pages 85-92.
    15. Kastl, Jakub & Buchholz, Nicholas & Doval, Laura & Matějka, Filip & Salz, Tobias, 2020. "The Value of Time: Evidence From Auctioned Cab Rides," CEPR Discussion Papers 14666, C.E.P.R. Discussion Papers.
    16. Junhong Chu & Yige Duan & Xianling Yang & Li Wang, 2021. "The Last Mile Matters: Impact of Dockless Bike Sharing on Subway Housing Price Premium," Management Science, INFORMS, vol. 67(1), pages 297-316, January.
    17. Wang, Xize & Rodríguez, Daniel A. & Mahendra, Anjali, 2021. "Support for market-based and command-and-control congestion relief policies in Latin American cities: Effects of mobility, environmental health, and city-level factors," Transportation Research Part A: Policy and Practice, Elsevier, vol. 146(C), pages 91-108.
    18. François Mirabel & Mathias Reymond, 2011. "The urban toll revenue recycling : what is the optimal share distributed towards mass transit system?," Working Papers hal-01830227, HAL.
    19. Rouhani, Omid M. & Geddes, R. Richard & Gao, H. Oliver & Bel, Germà, 2016. "Social welfare analysis of investment public–private partnership approaches for transportation projects," Transportation Research Part A: Policy and Practice, Elsevier, vol. 88(C), pages 86-103.
    20. Mirabel, François & Reymond, Mathias, 2011. "Bottleneck congestion pricing and modal split: Redistribution of toll revenue," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(1), pages 18-30, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:juecon:v:122:y:2021:i:c:s0094119020300899. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622905 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.