IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v77y2022ics030142072200112x.html
   My bibliography  Save this article

Predicting the changes in the WTI crude oil price dynamics using machine learning models

Author

Listed:
  • Guliyev, Hasraddin
  • Mustafayev, Eldayag

Abstract

This study aims to use a monthly dataset from 1991 to 2021 to predict West Texas Intermediate (WTI) oil price dynamics using U.S. macroeconomic and financial factors, as well as a global crisis and crashes. We used advanced machine learning models such as Logistic Regression, Decision Tree, Random Forest, AdaBoost, and XgBoost in this study. According to the results, the XgBoost and Random Forest models outperform traditional models. We also used DeLong statistical test procedures to accurately compare machine learning models' performance. In addition, the study used SHAP - SHapley Additive exPlanations values to support model evaluation and interpretability. This new outline highlights the critical features of the WTI crude oil price prediction and provides appropriate model explanations by utilizing the practical SHAP values. The empirical findings showed that machine learning models could successfully and accurately predict the trend of WTI crude oil price changes. Our findings are important for policymakers, companies, and investors, as well as long-term energy-based economic development.

Suggested Citation

  • Guliyev, Hasraddin & Mustafayev, Eldayag, 2022. "Predicting the changes in the WTI crude oil price dynamics using machine learning models," Resources Policy, Elsevier, vol. 77(C).
  • Handle: RePEc:eee:jrpoli:v:77:y:2022:i:c:s030142072200112x
    DOI: 10.1016/j.resourpol.2022.102664
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030142072200112X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2022.102664?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Gharib, Cheima & Mefteh-Wali, Salma & Jabeur, Sami Ben, 2021. "The bubble contagion effect of COVID-19 outbreak: Evidence from crude oil and gold markets," Finance Research Letters, Elsevier, vol. 38(C).
    2. Bonato, Matteo & Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2021. "A note on investor happiness and the predictability of realized volatility of gold," Finance Research Letters, Elsevier, vol. 39(C).
    3. İçen, Hüseyin & Yerdelen Tatoğlu, Ferda, 2021. "The asymmetric effects of changes in price and income on renewable and nonrenewable energy," Renewable Energy, Elsevier, vol. 178(C), pages 144-152.
    4. Leng, Na & Li, Jiang-Cheng, 2020. "Forecasting the crude oil prices based on Econophysics and Bayesian approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    5. Yıldırım, Durmuş Çağrı & Cevik, Emrah Ismail & Esen, Ömer, 2020. "Time-varying volatility spillovers between oil prices and precious metal prices," Resources Policy, Elsevier, vol. 68(C).
    6. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
    7. Matteo Bonato & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2020. "Investor Happiness and Predictability of the Realized Volatility of Oil Price," Sustainability, MDPI, vol. 12(10), pages 1-11, May.
    8. Salminen, Joni & Yoganathan, Vignesh & Corporan, Juan & Jansen, Bernard J. & Jung, Soon-Gyo, 2019. "Machine learning approach to auto-tagging online content for content marketing efficiency: A comparative analysis between methods and content type," Journal of Business Research, Elsevier, vol. 101(C), pages 203-217.
    9. Ling Tang & Wei Dai & Lean Yu & Shouyang Wang, 2015. "A Novel CEEMD-Based EELM Ensemble Learning Paradigm for Crude Oil Price Forecasting," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 14(01), pages 141-169.
    10. Zolfaghari, Mehdi & Ghoddusi, Hamed & Faghihian, Fatemeh, 2020. "Volatility spillovers for energy prices: A diagonal BEKK approach," Energy Economics, Elsevier, vol. 92(C).
    11. Sami Ben Jabeur & Rabeh Khalfaoui & Wissal Ben Arfi, 2021. "The effect of green energy, global environmental indexes, and stock markets in predicting oil price crashes: Evidence from explainable machine learning," Post-Print hal-03797577, HAL.
    12. Tiwari, Aviral Kumar & Aye, Goodness C. & Gupta, Rangan & Gkillas, Konstantinos, 2020. "Gold-oil dependence dynamics and the role of geopolitical risks: Evidence from a Markov-switching time-varying copula model," Energy Economics, Elsevier, vol. 88(C).
    13. Zhao, Zhao & Wen, Huwei & Li, Ke, 2021. "Identifying bubbles and the contagion effect between oil and stock markets: New evidence from China," Economic Modelling, Elsevier, vol. 94(C), pages 780-788.
    14. Zhang, Yongjie & Wang, Meng & Xiong, Xiong & Zou, Gaofeng, 2021. "Volatility spillovers between stock, bond, oil, and gold with portfolio implications: Evidence from China," Finance Research Letters, Elsevier, vol. 40(C).
    15. Demirer, Riza & Gupta, Rangan & Pierdzioch, Christian & Shahzad, Syed Jawad Hussain, 2020. "The predictive power of oil price shocks on realized volatility of oil: A note," Resources Policy, Elsevier, vol. 69(C).
    16. Lin, Ling & Jiang, Yong & Xiao, Helu & Zhou, Zhongbao, 2020. "Crude oil price forecasting based on a novel hybrid long memory GARCH-M and wavelet analysis model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 543(C).
    17. Dai, Xingyu & Wang, Qunwei & Zha, Donglan & Zhou, Dequn, 2020. "Multi-scale dependence structure and risk contagion between oil, gold, and US exchange rate: A wavelet-based vine-copula approach," Energy Economics, Elsevier, vol. 88(C).
    18. Mokni, Khaled & Hammoudeh, Shawkat & Ajmi, Ahdi Noomen & Youssef, Manel, 2020. "Does economic policy uncertainty drive the dynamic connectedness between oil price shocks and gold price?," Resources Policy, Elsevier, vol. 69(C).
    19. Hau, Liya & Zhu, Huiming & Huang, Rui & Ma, Xiang, 2020. "Heterogeneous dependence between crude oil price volatility and China’s agriculture commodity futures: Evidence from quantile-on-quantile regression," Energy, Elsevier, vol. 213(C).
    20. Mensi, Walid & Sensoy, Ahmet & Vo, Xuan Vinh & Kang, Sang Hoon, 2020. "Impact of COVID-19 outbreak on asymmetric multifractality of gold and oil prices," Resources Policy, Elsevier, vol. 69(C).
    21. Salisu, Afees A. & Vo, Xuan Vinh & Lawal, Adedoyin, 2021. "Hedging oil price risk with gold during COVID-19 pandemic," Resources Policy, Elsevier, vol. 70(C).
    22. Gkillas, Konstantinos & Bouri, Elie & Gupta, Rangan & Roubaud, David, 2022. "Spillovers in Higher-Order Moments of Crude Oil, Gold, and Bitcoin," The Quarterly Review of Economics and Finance, Elsevier, vol. 84(C), pages 398-406.
    23. Bernabe, Araceli & Martina, Esteban & Alvarez-Ramirez, Jose & Ibarra-Valdez, Carlos, 2004. "A multi-model approach for describing crude oil price dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 338(3), pages 567-584.
    24. Phillips, Peter C.B. & Shi, Shu-Ping, 2018. "Financial Bubble Implosion And Reverse Regression," Econometric Theory, Cambridge University Press, vol. 34(4), pages 705-753, August.
    25. Das, Debojyoti & Le Roux, Corlise Liesl & Jana, R.K. & Dutta, Anupam, 2020. "Does Bitcoin hedge crude oil implied volatility and structural shocks? A comparison with gold, commodity and the US Dollar," Finance Research Letters, Elsevier, vol. 36(C).
    26. Zhang, Jin-Liang & Zhang, Yue-Jun & Zhang, Lu, 2015. "A novel hybrid method for crude oil price forecasting," Energy Economics, Elsevier, vol. 49(C), pages 649-659.
    27. Niu, Hongli, 2021. "Correlations between crude oil and stocks prices of renewable energy and technology companies: A multiscale time-dependent analysis," Energy, Elsevier, vol. 221(C).
    28. Ebru Caglayan Akay & Sinem Guler Kangalli Uyar, 2016. "Determining the Functional Form of Relationships between Oil Prices and Macroeconomic Variables: The Case of Mexico, Indonesia, South Korea, Turkey Countries," International Journal of Economics and Financial Issues, Econjournals, vol. 6(3), pages 880-891.
    29. Guo, Yaoqi & Yu, Chenxi & Zhang, Hongwei & Cheng, Hui, 2021. "Asymmetric between oil prices and renewable energy consumption in the G7 countries," Energy, Elsevier, vol. 226(C).
    30. Bai, Yun & Li, Xixi & Yu, Hao & Jia, Suling, 2022. "Crude oil price forecasting incorporating news text," International Journal of Forecasting, Elsevier, vol. 38(1), pages 367-383.
    31. Morema, Kgotso & Bonga-Bonga, Lumengo, 2020. "The impact of oil and gold price fluctuations on the South African equity market: Volatility spillovers and financial policy implications," Resources Policy, Elsevier, vol. 68(C).
    32. Naeem, Muhammad Abubakr & Hasan, Mudassar & Arif, Muhammad & Balli, Faruk & Shahzad, Syed Jawad Hussain, 2020. "Time and frequency domain quantile coherence of emerging stock markets with gold and oil prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    33. Abdollahi, Hooman & Ebrahimi, Seyed Babak, 2020. "A new hybrid model for forecasting Brent crude oil price," Energy, Elsevier, vol. 200(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohsin, Muhammad & Jamaani, Fouad, 2023. "Green finance and the socio-politico-economic factors’ impact on the future oil prices: Evidence from machine learning," Resources Policy, Elsevier, vol. 85(PA).
    2. Peipei, Wang & James, William, 2024. "Predicting oil price fluctuations: Integrating external indicators and advanced regression techniques," Resources Policy, Elsevier, vol. 97(C).
    3. Li, Sufang & Xu, Qiufan & Lv, Yixue & Yuan, Di, 2022. "Public attention, oil and gold markets during the COVID-19: Evidence from time-frequency analysis," Resources Policy, Elsevier, vol. 78(C).
    4. Yan, Juan & Haroon, Muhammad, 2023. "Financing efficiency in natural resource markets mobilizing private and public capital for a green recovery," Resources Policy, Elsevier, vol. 85(PB).
    5. Mohsin, Muhammad & Jamaani, Fouad, 2023. "A novel deep-learning technique for forecasting oil price volatility using historical prices of five precious metals in context of green financing – A comparison of deep learning, machine learning, an," Resources Policy, Elsevier, vol. 86(PA).
    6. Kuang, Wei, 2022. "The economic value of high-frequency data in equity-oil hedge," Energy, Elsevier, vol. 239(PA).
    7. Çepni, Oğuzhan & Gupta, Rangan & Pienaar, Daniel & Pierdzioch, Christian, 2022. "Forecasting the realized variance of oil-price returns using machine learning: Is there a role for U.S. state-level uncertainty?," Energy Economics, Elsevier, vol. 114(C).
    8. Gupta, Rangan & Nielsen, Joshua & Pierdzioch, Christian, 2024. "Stock market bubbles and the realized volatility of oil price returns," Energy Economics, Elsevier, vol. 132(C).
    9. Cheng, Sheng & Han, Lingyu & Cao, Yan & Jiang, Qisheng & Liang, Ruibin, 2022. "Gold-oil dynamic relationship and the asymmetric role of geopolitical risks: Evidence from Bayesian pdBEKK-GARCH with regime switching," Resources Policy, Elsevier, vol. 78(C).
    10. Yiming, Wang & Xun, Liu & Umair, Muhammad & Aizhan, Assilova, 2024. "COVID-19 and the transformation of emerging economies: Financialization, green bonds, and stock market volatility," Resources Policy, Elsevier, vol. 92(C).
    11. Elie Bouri & Riza Demirer & Rangan Gupta & Christian Pierdzioch, 2020. "Infectious Diseases, Market Uncertainty and Oil Market Volatility," Energies, MDPI, vol. 13(16), pages 1-8, August.
    12. Luo, Jiawen & Demirer, Riza & Gupta, Rangan & Ji, Qiang, 2022. "Forecasting oil and gold volatilities with sentiment indicators under structural breaks," Energy Economics, Elsevier, vol. 105(C).
    13. Rangan Gupta & Christian Pierdzioch, 2021. "Climate Risks and the Realized Volatility Oil and Gas Prices: Results of an Out-of-Sample Forecasting Experiment," Energies, MDPI, vol. 14(23), pages 1-18, December.
    14. Rangan Gupta & Christian Pierdzioch, 2021. "Forecasting the Volatility of Crude Oil: The Role of Uncertainty and Spillovers," Energies, MDPI, vol. 14(14), pages 1-15, July.
    15. Jia, Miaoyin & Lu, Gan & Yan, Youliang & Nazir, Sidra, 2024. "Resilience through mineral resource development, oil, and natural resource efficiency: Strengthening economies," Resources Policy, Elsevier, vol. 91(C).
    16. Youssef, Manel & Mokni, Khaled, 2021. "Oil-gold nexus: Evidence from regime switching-quantile regression approach," Resources Policy, Elsevier, vol. 73(C).
    17. Raza, Syed Ali & Masood, Amna & Benkraiem, Ramzi & Urom, Christian, 2023. "Forecasting the volatility of precious metals prices with global economic policy uncertainty in pre and during the COVID-19 period: Novel evidence from the GARCH-MIDAS approach," Energy Economics, Elsevier, vol. 120(C).
    18. Sheng, Xin & Kim, Won Joong & Gupta, Rangan & Ji, Qiang, 2023. "The impacts of oil price volatility on financial stress: Is the COVID-19 period different?," International Review of Economics & Finance, Elsevier, vol. 85(C), pages 520-532.
    19. Naeem, Muhammad Abubakr & Pham, Linh & Senthilkumar, Arunachalam & Karim, Sitara, 2022. "Oil shocks and BRIC markets: Evidence from extreme quantile approach," Energy Economics, Elsevier, vol. 108(C).
    20. Salisu, Afees A. & Gupta, Rangan & Demirer, Riza, 2022. "Global financial cycle and the predictability of oil market volatility: Evidence from a GARCH-MIDAS model," Energy Economics, Elsevier, vol. 108(C).

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:77:y:2022:i:c:s030142072200112x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.