IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v64y2017icp132-138.html
   My bibliography  Save this article

Exploring built environment correlates of walking distance of transit egress in the Twin Cities

Author

Listed:
  • Wang, Jueyu
  • Cao, Xinyu

Abstract

Most studies on walking distance to transit stops either emphasize transit access or do not distinguish transit access and egress. Furthermore, environmental correlates of walking distance may differ by stop location. Using the 2010 Transit Onboard Survey in the Minneapolis and St. Paul Metropolitan Area, this study develops four models to compare the effects of the built environment around transit stops on walking distance of transit egress. Job density is negatively correlated with walking distance, consistent in all four models. Other built environment variables exhibit different impacts by stop location. Particularly, land use mix has positive impacts on walking distance for stops outside of downtown and suburban employment centers whereas job density is more important for suburban centers. Job accessibility and the number of intersections have significant effects on stops within downtown areas but have no significant impacts on stops outside of downtown areas. The number of transit stops has opposite impacts on walking distance for stops within and outside of downtown. Moreover, the built environment tends to have a larger impact on walking distance in downtown areas than non-downtown areas. We then discuss the implications for stop area land use planning and transit stop location choice.

Suggested Citation

  • Wang, Jueyu & Cao, Xinyu, 2017. "Exploring built environment correlates of walking distance of transit egress in the Twin Cities," Journal of Transport Geography, Elsevier, vol. 64(C), pages 132-138.
  • Handle: RePEc:eee:jotrge:v:64:y:2017:i:c:p:132-138
    DOI: 10.1016/j.jtrangeo.2017.08.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692316307116
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2017.08.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Reid Ewing & Robert Cervero, 2010. "Travel and the Built Environment," Journal of the American Planning Association, Taylor & Francis Journals, vol. 76(3), pages 265-294.
    2. Juan Carlos García-Palomares & Javier Gutiérrez & Osvaldo Daniel Cardozo, 2013. "Walking Accessibility to Public Transport: An Analysis Based on Microdata and GIS," Environment and Planning B, , vol. 40(6), pages 1087-1102, December.
    3. Kim, Sungyop & Ulfarsson, Gudmundur F. & Todd Hennessy, J., 2007. "Analysis of light rail rider travel behavior: Impacts of individual, built environment, and crime characteristics on transit access," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(6), pages 511-522, July.
    4. Daniels, Rhonda & Mulley, Corinne, 2013. "Explaining walking distance to public transport: The dominance of public transport supply," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 6(2), pages 5-20.
    5. Jeffrey Brown & Gregory Thompson, 2008. "Examining the influence of multidestination service orientation on transit service productivity: a multivariate analysis," Transportation, Springer, vol. 35(2), pages 237-252, March.
    6. Jiang, Yang & Christopher Zegras, P. & Mehndiratta, Shomik, 2012. "Walk the line: station context, corridor type and bus rapid transit walk access in Jinan, China," Journal of Transport Geography, Elsevier, vol. 20(1), pages 1-14.
    7. Ahmed El-Geneidy & Michael Grimsrud & Rania Wasfi & Paul Tétreault & Julien Surprenant-Legault, 2014. "New evidence on walking distances to transit stops: identifying redundancies and gaps using variable service areas," Transportation, Springer, vol. 41(1), pages 193-210, January.
    8. Craig Townsend & John Zacharias, 2010. "Built environment and pedestrian behavior at rail rapid transit stations in Bangkok," Transportation, Springer, vol. 37(2), pages 317-330, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhan, Zilin & Guo, Yuanyuan & Noland, Robert B. & He, Sylvia Y. & Wang, Yacan, 2023. "Analysis of links between dockless bikeshare and metro trips in Beijing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
    2. Yang, Jiawen & Su, Pinren & Cao, Jason, 2020. "On the importance of Shenzhen metro transit to land development and threshold effect," Transport Policy, Elsevier, vol. 99(C), pages 1-11.
    3. Pueboobpaphan, Rattaphol & Pueboobpaphan, Suthatip & Sukhotra, Suthasinee, 2022. "Acceptable walking distance to transit stations in Bangkok, Thailand: Application of a stated preference technique," Journal of Transport Geography, Elsevier, vol. 99(C).
    4. Xia Li & Zhenyu Liu & Xinwei Ma, 2022. "Measuring Access and Egress Distance and Catchment Area of Multiple Feeding Modes for Metro Transferring Using Survey Data," Sustainability, MDPI, vol. 14(5), pages 1-16, February.
    5. Panyu Tang & Mahdi Aghaabbasi & Mujahid Ali & Amin Jan & Abdeliazim Mustafa Mohamed & Abdullah Mohamed, 2022. "How Sustainable Is People’s Travel to Reach Public Transit Stations to Go to Work? A Machine Learning Approach to Reveal Complex Relationships," Sustainability, MDPI, vol. 14(7), pages 1-18, March.
    6. Shiwakoti, Nirajan & Stasinopoulos, Peter & Vincec, Paul & Qian, Weidong & Hafsar, Renan, 2019. "Exploring how perceptive differences impact the current public transport usage and support for future public transport extension and usage: A case study of Melbourne's tramline extension," Transport Policy, Elsevier, vol. 84(C), pages 12-23.
    7. Seung-Nam Kim & Juwon Chung & Junseung Lee, 2022. "Exploring the Role of Transit Ridership as a Proxy for Regional Centrality in Moderating the Relationship between the 3Ds and Street-Level Pedestrian Volume: Evidence from Seoul, Korea," Land, MDPI, vol. 11(10), pages 1-22, October.
    8. Gan, Zuoxian & Yang, Min & Zeng, Qingcheng & Timmermans, Harry J.P., 2021. "Associations between built environment, perceived walkability/bikeability and metro transfer patterns," Transportation Research Part A: Policy and Practice, Elsevier, vol. 153(C), pages 171-187.
    9. Tao, Tao & Wang, Jueyu & Cao, Xinyu, 2020. "Exploring the non-linear associations between spatial attributes and walking distance to transit," Journal of Transport Geography, Elsevier, vol. 82(C).
    10. Yu, Le & Xie, Binglei & Chan, Edwin H.W., 2019. "Exploring impacts of the built environment on transit travel: Distance, time and mode choice, for urban villages in Shenzhen, China," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 132(C), pages 57-71.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pueboobpaphan, Rattaphol & Pueboobpaphan, Suthatip & Sukhotra, Suthasinee, 2022. "Acceptable walking distance to transit stations in Bangkok, Thailand: Application of a stated preference technique," Journal of Transport Geography, Elsevier, vol. 99(C).
    2. Mulley, Corinne & Ho, Chinh & Ho, Loan & Hensher, David & Rose, John, 2018. "Will bus travellers walk further for a more frequent service? An international study using a stated preference approach," Transport Policy, Elsevier, vol. 69(C), pages 88-97.
    3. Vale, David S. & Viana, Cláudia M. & Pereira, Mauro, 2018. "The extended node-place model at the local scale: Evaluating the integration of land use and transport for Lisbon's subway network," Journal of Transport Geography, Elsevier, vol. 69(C), pages 282-293.
    4. Gan, Zuoxian & Yang, Min & Zeng, Qingcheng & Timmermans, Harry J.P., 2021. "Associations between built environment, perceived walkability/bikeability and metro transfer patterns," Transportation Research Part A: Policy and Practice, Elsevier, vol. 153(C), pages 171-187.
    5. Sun, Guibo & Wallace, Dugald & Webster, Chris, 2020. "Unravelling the impact of street network structure and gated community layout in development-oriented transit design," Land Use Policy, Elsevier, vol. 90(C).
    6. Tilahun, Nebiyou & Thakuriah, Piyushimita (Vonu) & Li, Moyin & Keita, Yaye, 2016. "Transit use and the work commute: Analyzing the role of last mile issues," Journal of Transport Geography, Elsevier, vol. 54(C), pages 359-368.
    7. Gupta, Akshay & Bivina, G.R. & Parida, Manoranjan, 2022. "Does neighborhood design matter for walk access to metro stations? An integrated SEM-Hybrid discrete mode choice approach," Transport Policy, Elsevier, vol. 121(C), pages 61-77.
    8. Panyu Tang & Mahdi Aghaabbasi & Mujahid Ali & Amin Jan & Abdeliazim Mustafa Mohamed & Abdullah Mohamed, 2022. "How Sustainable Is People’s Travel to Reach Public Transit Stations to Go to Work? A Machine Learning Approach to Reveal Complex Relationships," Sustainability, MDPI, vol. 14(7), pages 1-18, March.
    9. Tao, Tao & Wang, Jueyu & Cao, Xinyu, 2020. "Exploring the non-linear associations between spatial attributes and walking distance to transit," Journal of Transport Geography, Elsevier, vol. 82(C).
    10. O'Connor, David & Caulfield, Brian, 2018. "Level of service and the transit neighbourhood - Observations from Dublin city and suburbs," Research in Transportation Economics, Elsevier, vol. 69(C), pages 59-67.
    11. Venter, Christoffel J., 2020. "Measuring the quality of the first/last mile connection to public transport," Research in Transportation Economics, Elsevier, vol. 83(C).
    12. David S Vale & Mauro Pereira, 2017. "The influence of the impedance function on gravity-based pedestrian accessibility measures: A comparative analysis," Environment and Planning B, , vol. 44(4), pages 740-763, July.
    13. Manout, Ouassim & Bonnel, Patrick & Bouzouina, Louafi, 2018. "Transit accessibility: A new definition of transit connectors," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 88-100.
    14. Chandra, Shailesh & Jimenez, Jose & Radhakrishnan, Ramalingam, 2017. "Accessibility evaluations for nighttime walking and bicycling for low-income shift workers," Journal of Transport Geography, Elsevier, vol. 64(C), pages 97-108.
    15. Lucas, Karen & Philips, Ian & Mulley, Corinne & Ma, Liang, 2018. "Is transport poverty socially or environmentally driven? Comparing the travel behaviours of two low-income populations living in central and peripheral locations in the same city," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 622-634.
    16. Wenjia Zhang, 2016. "Does compact land use trigger a rise in crime and a fall in ridership? A role for crime in the land use–travel connection," Urban Studies, Urban Studies Journal Limited, vol. 53(14), pages 3007-3026, November.
    17. Vergel-Tovar, C. Erik & Rodriguez, Daniel A., 2018. "The ridership performance of the built environment for BRT systems: Evidence from Latin America," Journal of Transport Geography, Elsevier, vol. 73(C), pages 172-184.
    18. Azad, Mojdeh & Abdelqader, Dua & Taboada, Luis M. & Cherry, Christopher R., 2021. "Walk-to-transit demand estimation methods applied at the parcel level to improve pedestrian infrastructure investment," Journal of Transport Geography, Elsevier, vol. 92(C).
    19. Gao, Jie & Kamphuis, Carlijn B.M. & Helbich, Marco & Ettema, Dick, 2020. "What is ‘neighborhood walkability’? How the built environment differently correlates with walking for different purposes and with walking on weekdays and weekends," Journal of Transport Geography, Elsevier, vol. 88(C).
    20. Abenoza, Roberto F. & Liu, Chengxi & Cats, Oded & Susilo, Yusak O., 2019. "What is the role of weather, built-environment and accessibility geographical characteristics in influencing travelers’ experience?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 122(C), pages 34-50.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:64:y:2017:i:c:p:132-138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.