Exploring the non-linear associations between spatial attributes and walking distance to transit
Author
Abstract
Suggested Citation
DOI: 10.1016/j.jtrangeo.2019.102560
Download full text from publisher
References listed on IDEAS
- Ahmed El-Geneidy & Michael Grimsrud & Rania Wasfi & Paul Tétreault & Julien Surprenant-Legault, 2014. "New evidence on walking distances to transit stops: identifying redundancies and gaps using variable service areas," Transportation, Springer, vol. 41(1), pages 193-210, January.
- Wang, Jueyu & Cao, Xinyu, 2017. "Exploring built environment correlates of walking distance of transit egress in the Twin Cities," Journal of Transport Geography, Elsevier, vol. 64(C), pages 132-138.
- Mark R. Stevens, 2017. "Response to Commentaries on “Does Compact Development Make People Drive Less?”," Journal of the American Planning Association, Taylor & Francis Journals, vol. 83(2), pages 151-158, April.
- Cao, Xinyu Jason, 2019. "Examining the effect of the Hiawatha LRT on auto use in the Twin Cities," Transport Policy, Elsevier, vol. 81(C), pages 284-292.
- Craig Townsend & John Zacharias, 2010. "Built environment and pedestrian behavior at rail rapid transit stations in Bangkok," Transportation, Springer, vol. 37(2), pages 317-330, March.
- Baldwin Hess, Daniel, 2009. "Access to Public Transit and Its Influence on Ridership for Older Adults in Two U.S. Cities," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 2(1), pages 3-27.
- Ziliak, Stephen T. & McCloskey, Deirdre N., 2004.
"Size matters: the standard error of regressions in the American Economic Review,"
Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 33(5), pages 527-546, November.
- Stephen T. Ziliak & Deirdre N. McCloskey, 2004. "Size Matters: The Standard Error of Regressions in the American Economic Review," Econ Journal Watch, Econ Journal Watch, vol. 1(2), pages 331-358, August.
- Friedman, Jerome H., 2002. "Stochastic gradient boosting," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 367-378, February.
- Arthur C. Nelson, 2017. "Compact Development Reduces VMT: Evidence and Application for Planners—Comment on “Does Compact Development Make People Drive Less?”," Journal of the American Planning Association, Taylor & Francis Journals, vol. 83(1), pages 36-41, January.
- Ding, Chuan & Cao, Xinyu & Liu, Chao, 2019. "How does the station-area built environment influence Metrorail ridership? Using gradient boosting decision trees to identify non-linear thresholds," Journal of Transport Geography, Elsevier, vol. 77(C), pages 70-78.
- Mark R. Stevens, 2017. "Does Compact Development Make People Drive Less?," Journal of the American Planning Association, Taylor & Francis Journals, vol. 83(1), pages 7-18, January.
- Gutiérrez, Javier & Cardozo, Osvaldo Daniel & García-Palomares, Juan Carlos, 2011. "Transit ridership forecasting at station level: an approach based on distance-decay weighted regression," Journal of Transport Geography, Elsevier, vol. 19(6), pages 1081-1092.
- Ding, Chuan & Cao, Xinyu (Jason) & Næss, Petter, 2018. "Applying gradient boosting decision trees to examine non-linear effects of the built environment on driving distance in Oslo," Transportation Research Part A: Policy and Practice, Elsevier, vol. 110(C), pages 107-117.
- Jiang, Yang & Christopher Zegras, P. & Mehndiratta, Shomik, 2012. "Walk the line: station context, corridor type and bus rapid transit walk access in Jinan, China," Journal of Transport Geography, Elsevier, vol. 20(1), pages 1-14.
- Reid Ewing & Robert Cervero, 2017. "“Does Compact Development Make People Drive Less?” The Answer Is Yes," Journal of the American Planning Association, Taylor & Francis Journals, vol. 83(1), pages 19-25, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Panyu Tang & Mahdi Aghaabbasi & Mujahid Ali & Amin Jan & Abdeliazim Mustafa Mohamed & Abdullah Mohamed, 2022. "How Sustainable Is People’s Travel to Reach Public Transit Stations to Go to Work? A Machine Learning Approach to Reveal Complex Relationships," Sustainability, MDPI, vol. 14(7), pages 1-18, March.
- Tao, Tao & Cao, Jason, 2023. "Exploring nonlinear and collective influences of regional and local built environment characteristics on travel distances by mode," Journal of Transport Geography, Elsevier, vol. 109(C).
- Laviolette, Jérôme & Morency, Catherine & Waygood, E.O.D., 2022. "A kilometer or a mile? Does buffer size matter when it comes to car ownership?," Journal of Transport Geography, Elsevier, vol. 104(C).
- Aston, Laura & Currie, Graham & Kamruzzaman, Md. & Delbosc, Alexa & Teller, David, 2020. "Study design impacts on built environment and transit use research," Journal of Transport Geography, Elsevier, vol. 82(C).
- Pueboobpaphan, Rattaphol & Pueboobpaphan, Suthatip & Sukhotra, Suthasinee, 2022. "Acceptable walking distance to transit stations in Bangkok, Thailand: Application of a stated preference technique," Journal of Transport Geography, Elsevier, vol. 99(C).
- Ding, Chuan & Cao, Xinyu & Yu, Bin & Ju, Yang, 2021. "Non-linear associations between zonal built environment attributes and transit commuting mode choice accounting for spatial heterogeneity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 22-35.
- Tao, Tao & Cao, Jason, 2024. "Ineffective built environment interventions: How to reduce driving in American suburbs?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
- Ding, Chuan & Cao, Xinyu & Liu, Chao, 2019. "How does the station-area built environment influence Metrorail ridership? Using gradient boosting decision trees to identify non-linear thresholds," Journal of Transport Geography, Elsevier, vol. 77(C), pages 70-78.
- Liu, Jixiang & Wang, Bo & Xiao, Longzhu, 2021. "Non-linear associations between built environment and active travel for working and shopping: An extreme gradient boosting approach," Journal of Transport Geography, Elsevier, vol. 92(C).
- Ding, Chuan & Cao, Xinyu & Wang, Yunpeng, 2018. "Synergistic effects of the built environment and commuting programs on commute mode choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 104-118.
- Ding, Chuan & Cao, Xinyu (Jason) & Næss, Petter, 2018. "Applying gradient boosting decision trees to examine non-linear effects of the built environment on driving distance in Oslo," Transportation Research Part A: Policy and Practice, Elsevier, vol. 110(C), pages 107-117.
- Guan, Xiaodong & Wang, Donggen, 2019. "Influences of the built environment on travel: A household-based perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 710-724.
- Yang, Jiawen & Su, Pinren & Cao, Jason, 2020. "On the importance of Shenzhen metro transit to land development and threshold effect," Transport Policy, Elsevier, vol. 99(C), pages 1-11.
- Jixiang Liu & Longzhu Xiao, 2024. "Socioeconomic differences in effect size: predicting commuting mode choice of migrants and locals using a light gradient boosting approach," Transportation, Springer, vol. 51(1), pages 1-24, February.
- Tian, Guang & Ewing, Reid & Li, Han, 2023. "Exploring the influences of ride-hailing services on VMT and transit usage – Evidence from California," Journal of Transport Geography, Elsevier, vol. 110(C).
- Du, Qiang & Zhou, Yuqing & Huang, Youdan & Wang, Yalei & Bai, Libiao, 2022. "Spatiotemporal exploration of the non-linear impacts of accessibility on metro ridership," Journal of Transport Geography, Elsevier, vol. 102(C).
- Gan, Zuoxian & Yang, Min & Zeng, Qingcheng & Timmermans, Harry J.P., 2021. "Associations between built environment, perceived walkability/bikeability and metro transfer patterns," Transportation Research Part A: Policy and Practice, Elsevier, vol. 153(C), pages 171-187.
- Blanco, Hilda & Wikstrom, Alexander, 2018. "Transit-Oriented Development Opportunities Among Failing Malls," Institute of Transportation Studies, Working Paper Series qt3h62q04h, Institute of Transportation Studies, UC Davis.
- Wang, Jueyu & Cao, Xinyu, 2017. "Exploring built environment correlates of walking distance of transit egress in the Twin Cities," Journal of Transport Geography, Elsevier, vol. 64(C), pages 132-138.
- Tomás Cox & Ricardo Hurtubia, 2022. "Compact development and preferences for social mixing in location choices: Results from revealed preferences in Santiago, Chile," Journal of Regional Science, Wiley Blackwell, vol. 62(1), pages 246-269, January.
More about this item
Keywords
Machine learning; Walking behavior; Station area planning; Built environment; Land use;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:82:y:2020:i:c:s0966692318307233. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.