IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v123y2025ics0966692325000407.html
   My bibliography  Save this article

Relationship between shared micromobility and public transit: The differences between shared bikes and shared E-bikes

Author

Listed:
  • Kong, Hui
  • Chao, Hao
  • Fu, Wenyan
  • Lin, Diao
  • Zhang, Yongping

Abstract

Extensive research has been conducted on the usage patterns and potential impacts of shared micromobility, yet the distinct relationships with public transit between shared bikes and shared E-bikes – the two main micromobility modes in China – remain unexplored. Examining the potentially distinct modal shift patterns away from public transit is essential to understand the landscape of different micromobility modes and their different disruptions to traditional transportation modes. To bridge this gap, this study analyzed shared micromobility trip data from Ningbo, China, aiming to quantify the relationship between shared micromobility and public transit, and differentiate between the interactions of shared bikes and E-bikes with public transit. We employed a geospatial-based approach to categorize each shared micromobility trip into three types: Modal Substitution (MS), Modal Integration (MI), and Modal Complementation (MC), based on their interactions with buses and subways. Then we explored the spatial and temporal patterns of the shares of MS, MI, and MC trips, and investigated factors influencing these varied relationships using Spatial Autoregressive (SAR) models. Our findings indicate that shared E-bikes more frequently substitute for public transit, whereas shared bikes are predominantly used in MC roles. There are notable temporal and spatial variations in the usage of shared E-bikes and bikes: temporally, there is a morning peak of shared E-bikes that substitute public transit, and spatially, E-bike sharing has a higher concentration of substitution in suburbs while bike sharing has a higher concentration of complementation in the outer areas. The observed differences between E-bikes and bikes regarding their relationship with public transit are largely influenced by trip distance, speed, and public transit characteristics. This study highlights the importance of recognizing the diverse interactions between different shared micromobility modes and public transit, and sheds light on the development and management of shared micromobility and public transit systems.

Suggested Citation

  • Kong, Hui & Chao, Hao & Fu, Wenyan & Lin, Diao & Zhang, Yongping, 2025. "Relationship between shared micromobility and public transit: The differences between shared bikes and shared E-bikes," Journal of Transport Geography, Elsevier, vol. 123(C).
  • Handle: RePEc:eee:jotrge:v:123:y:2025:i:c:s0966692325000407
    DOI: 10.1016/j.jtrangeo.2025.104149
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692325000407
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2025.104149?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dennis van Soest & Miles R. Tight & Christopher D. F. Rogers, 2020. "Exploring the distances people walk to access public transport," Transport Reviews, Taylor & Francis Journals, vol. 40(2), pages 160-182, March.
    2. Lu-Yi Qiu & Ling-Yun He, 2018. "Bike Sharing and the Economy, the Environment, and Health-Related Externalities," Sustainability, MDPI, vol. 10(4), pages 1-10, April.
    3. Jin, Scarlett T. & Sui, Daniel Z., 2024. "A comparative analysis of the spatial determinants of e-bike and e-scooter sharing link flows," Journal of Transport Geography, Elsevier, vol. 119(C).
    4. Meredith-Karam, Patrick & Kong, Hui & Wang, Shenhao & Zhao, Jinhua, 2021. "The relationship between ridehailing and public transit in Chicago: A comparison before and after COVID-19," Journal of Transport Geography, Elsevier, vol. 97(C).
    5. Campbell, Kayleigh B. & Brakewood, Candace, 2017. "Sharing riders: How bikesharing impacts bus ridership in New York City," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 264-282.
    6. Martin, Rebecca & Xu, Yilan, 2022. "Is tech-enhanced bikeshare a substitute or complement for public transit?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 155(C), pages 63-78.
    7. Dai, Jingchen & Liu, Zhiyong & Li, Ruimin, 2021. "Improving the subway attraction for the post-COVID-19 era: The role of fare-free public transport policy," Transport Policy, Elsevier, vol. 103(C), pages 21-30.
    8. Martin, Elliot W. & Shaheen, Susan A., 2014. "Evaluating public transit modal shift dynamics in response to bikesharing: a tale of two U.S. cities," Journal of Transport Geography, Elsevier, vol. 41(C), pages 315-324.
    9. Martin, Elliot PhD & Shaheen, Susan PhD, 2014. "Evaluating Public Transit Modal Shift Dynamics In Response to Bikesharing: A Tale of Two U.S. Cities," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6x29n876, Institute of Transportation Studies, UC Berkeley.
    10. Ahmed El-Geneidy & Michael Grimsrud & Rania Wasfi & Paul Tétreault & Julien Surprenant-Legault, 2014. "New evidence on walking distances to transit stops: identifying redundancies and gaps using variable service areas," Transportation, Springer, vol. 41(1), pages 193-210, January.
    11. Wang, Jueyu & Cao, Xinyu, 2017. "Exploring built environment correlates of walking distance of transit egress in the Twin Cities," Journal of Transport Geography, Elsevier, vol. 64(C), pages 132-138.
    12. Khashayar Kazemzadeh & Enrico Ronchi, 2022. "From bike to electric bike level-of-service," Transport Reviews, Taylor & Francis Journals, vol. 42(1), pages 6-31, January.
    13. Ziwen Ling & Christopher R. Cherry & John H. MacArthur & Jonathan X. Weinert, 2017. "Differences of Cycling Experiences and Perceptions between E-Bike and Bicycle Users in the United States," Sustainability, MDPI, vol. 9(9), pages 1-18, September.
    14. Czepkiewicz, Michał & Ottelin, Juudit & Ala-Mantila, Sanna & Heinonen, Jukka & Hasanzadeh, Kamyar & Kyttä, Marketta, 2018. "Urban structural and socioeconomic effects on local, national and international travel patterns and greenhouse gas emissions of young adults," Journal of Transport Geography, Elsevier, vol. 68(C), pages 130-141.
    15. Xinwei Ma & Ruiming Cao & Jianbiao Wang, 2019. "Effects of Psychological Factors on Modal Shift from Car to Dockless Bike Sharing: A Case Study of Nanjing, China," IJERPH, MDPI, vol. 16(18), pages 1-16, September.
    16. Philips, Ian & Anable, Jillian & Chatterton, Tim, 2022. "E-bikes and their capability to reduce car CO2 emissions," Transport Policy, Elsevier, vol. 116(C), pages 11-23.
    17. Yang, Hongtai & Huo, Jinghai & Bao, Yongxing & Li, Xuan & Yang, Linchuan & Cherry, Christopher R., 2021. "Impact of e-scooter sharing on bike sharing in Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 23-36.
    18. Kager, R. & Bertolini, L. & Te Brömmelstroet, M., 2016. "Characterisation of and reflections on the synergy of bicycles and public transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 85(C), pages 208-219.
    19. Zhang, Yongping & Mi, Zhifu, 2018. "Environmental benefits of bike sharing: A big data-based analysis," Applied Energy, Elsevier, vol. 220(C), pages 296-301.
    20. João Filipe Teixeira & Cecília Silva & Frederico Moura e Sá, 2021. "Empirical evidence on the impacts of bikesharing: a literature review," Transport Reviews, Taylor & Francis Journals, vol. 41(3), pages 329-351, May.
    21. Jinhyun Hong & Qing Shen & Lei Zhang, 2014. "How do built-environment factors affect travel behavior? A spatial analysis at different geographic scales," Transportation, Springer, vol. 41(3), pages 419-440, May.
    22. Shaheen, Susan PhD & Martin, Elliot PhD & Cohen, Adam, 2013. "Public Bikesharing and Modal Shift Behavior: A Comparative Study of Early Bikesharing Systems in North America," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt7010k9p3, Institute of Transportation Studies, UC Berkeley.
    23. Radzimski, Adam & Dzięcielski, Michał, 2021. "Exploring the relationship between bike-sharing and public transport in Poznań, Poland," Transportation Research Part A: Policy and Practice, Elsevier, vol. 145(C), pages 189-202.
    24. Elliot Fishman & Simon Washington & Narelle Haworth, 2013. "Bike Share: A Synthesis of the Literature," Transport Reviews, Taylor & Francis Journals, vol. 33(2), pages 148-165, March.
    25. Zheyan Chen & Dea van Lierop & Dick Ettema, 2020. "Dockless bike-sharing systems: what are the implications?," Transport Reviews, Taylor & Francis Journals, vol. 40(3), pages 333-353, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Kyoungok, 2023. "Investigation of modal integration of bike-sharing and public transit in Seoul for the holders of 365-day passes," Journal of Transport Geography, Elsevier, vol. 106(C).
    2. Yuanyuan Zhang & Yuming Zhang, 2018. "Associations between Public Transit Usage and Bikesharing Behaviors in The United States," Sustainability, MDPI, vol. 10(6), pages 1-20, June.
    3. Gao, Kun & Yang, Ying & Li, Aoyong & Li, Junhong & Yu, Bo, 2021. "Quantifying economic benefits from free-floating bike-sharing systems: A trip-level inference approach and city-scale analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 144(C), pages 89-103.
    4. Liu, Xinyu & Yu, Jie & Zhao, Jing & Schneider, Robert J., 2025. "Bikeshare impacts on bus ridership: Unraveling the rail proximity effect," Transportation Research Part A: Policy and Practice, Elsevier, vol. 192(C).
    5. Yi Zhu, 2022. "Can bicycle sharing mitigate vehicle emission in Chinese large cities? Estimation based on mode shift analysis," Transportation, Springer, vol. 49(6), pages 1627-1648, December.
    6. Böcker, Lars & Anderson, Ellinor & Uteng, Tanu Priya & Throndsen, Torstein, 2020. "Bike sharing use in conjunction to public transport: Exploring spatiotemporal, age and gender dimensions in Oslo, Norway," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 389-401.
    7. Zhan, Zilin & Guo, Yuanyuan & Noland, Robert B. & He, Sylvia Y. & Wang, Yacan, 2023. "Analysis of links between dockless bikeshare and metro trips in Beijing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
    8. Kim, Minjun & Cho, Gi-Hyoug, 2021. "Analysis on bike-share ridership for origin-destination pairs: Effects of public transit route characteristics and land-use patterns," Journal of Transport Geography, Elsevier, vol. 93(C).
    9. Link, Christoph & Strasser, Christoph & Hinterreiter, Michael, 2020. "Free-floating bikesharing in Vienna – A user behaviour analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 168-182.
    10. Radzimski, Adam & Dzięcielski, Michał, 2021. "Exploring the relationship between bike-sharing and public transport in Poznań, Poland," Transportation Research Part A: Policy and Practice, Elsevier, vol. 145(C), pages 189-202.
    11. Ma, Xinwei & Ji, Yanjie & Yuan, Yufei & Van Oort, Niels & Jin, Yuchuan & Hoogendoorn, Serge, 2020. "A comparison in travel patterns and determinants of user demand between docked and dockless bike-sharing systems using multi-sourced data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 148-173.
    12. Todd, James & O'Brien, Oliver & Cheshire, James, 2021. "A global comparison of bicycle sharing systems," Journal of Transport Geography, Elsevier, vol. 94(C).
    13. Hu, Beibei & Zhong, Zhenfang & Zhang, Yanli & Sun, Yue & Jiang, Li & Dong, Xianlei & Sun, Huijun, 2022. "Understanding the influencing factors of bicycle-sharing demand based on residents’ trips," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    14. Zhao, Chunkai & Wang, Yuhang & Ge, Zhenyu, 2023. "Is digital finance environmentally friendly in China? Evidence from shared-bike trips," Transport Policy, Elsevier, vol. 138(C), pages 129-143.
    15. Qiu, Waishan & Chang, Hector, 2021. "The interplay between dockless bikeshare and bus for small-size cities in the US: A case study of Ithaca," Journal of Transport Geography, Elsevier, vol. 96(C).
    16. Xiaofeng Li & Yao-Jan Wu & Alireza Khani, 2022. "Investigating a small-sized bike-sharing system’s impact on transit usage: a synthetic control analysis in Tucson, Arizona," Public Transport, Springer, vol. 14(2), pages 441-458, June.
    17. Xiaozhou Ye, 2022. "Bike-Sharing Adoption in Cross-National Contexts: An Empirical Research on the Factors Affecting Users’ Intentions," Sustainability, MDPI, vol. 14(6), pages 1-19, March.
    18. Xinwei Ma & Ruiming Cao & Jianbiao Wang, 2019. "Effects of Psychological Factors on Modal Shift from Car to Dockless Bike Sharing: A Case Study of Nanjing, China," IJERPH, MDPI, vol. 16(18), pages 1-16, September.
    19. Teixeira, João Filipe & Silva, Cecília & Moura e Sá, Frederico, 2023. "Factors influencing modal shift to bike sharing: Evidence from a travel survey conducted during COVID-19," Journal of Transport Geography, Elsevier, vol. 111(C).
    20. Hyungkyoo Kim, 2020. "Seasonal Impacts of Particulate Matter Levels on Bike Sharing in Seoul, South Korea," IJERPH, MDPI, vol. 17(11), pages 1-17, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:123:y:2025:i:c:s0966692325000407. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.