IDEAS home Printed from https://ideas.repec.org/a/eee/jmacro/v34y2012i2p553-566.html
   My bibliography  Save this article

Information contagion within small worlds and changes in kurtosis and volatility in financial prices

Author

Listed:
  • Bowden, Mark P.

Abstract

An agent based artificial market is developed to determine the impact of the interaction between investors on prices. It consists of sentiment investors, a single fundamental investor and a market maker. Sentiment investors live in a small world network and have limited liquidity. They trade based on their assessment of the future direction of the market. Consistent with the social learning literature, there are two types of sentiment investors; social learners and experts. Experts only consider private information while social learners also consider the views of neighbours. It is found that the interaction between the agents generate kurtosis and persistence characteristics of volatility in returns. In addition, the level of kurtosis and volatility depends on the inter-connectedness of the network as well as the number of experts and the number of connections from these experts to social learners. Cluster coefficient and characteristic path length analysis show that kurtosis and volatility are lowest within the small world region of the network. This effect is negated as the number of experts increases beyond a threshold.

Suggested Citation

  • Bowden, Mark P., 2012. "Information contagion within small worlds and changes in kurtosis and volatility in financial prices," Journal of Macroeconomics, Elsevier, vol. 34(2), pages 553-566.
  • Handle: RePEc:eee:jmacro:v:34:y:2012:i:2:p:553-566
    DOI: 10.1016/j.jmacro.2012.01.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0164070412000055
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brock, William A. & Hommes, Cars H., 1998. "Heterogeneous beliefs and routes to chaos in a simple asset pricing model," Journal of Economic Dynamics and Control, Elsevier, vol. 22(8-9), pages 1235-1274, August.
    2. Lux, Thomas, 1998. "The socio-economic dynamics of speculative markets: interacting agents, chaos, and the fat tails of return distributions," Journal of Economic Behavior & Organization, Elsevier, vol. 33(2), pages 143-165, January.
    3. Day, Richard H. & Huang, Weihong, 1990. "Bulls, bears and market sheep," Journal of Economic Behavior & Organization, Elsevier, vol. 14(3), pages 299-329, December.
    4. Manzan, Sebastiano & Westerhoff, Frank H., 2007. "Heterogeneous expectations, exchange rate dynamics and predictability," Journal of Economic Behavior & Organization, Elsevier, vol. 64(1), pages 111-128, September.
    5. Bischi, Gian-Italo & Gallegati, Mauro & Gardini, Laura & Leombruni, Roberto & Palestrini, Antonio, 2006. "Herd Behavior And Nonfundamental Asset Price Fluctuations In Financial Markets," Macroeconomic Dynamics, Cambridge University Press, vol. 10(04), pages 502-528, September.
    6. John Y. Campbell, 2001. "Have Individual Stocks Become More Volatile? An Empirical Exploration of Idiosyncratic Risk," Journal of Finance, American Finance Association, vol. 56(1), pages 1-43, February.
    7. Chiarella, Carl & He, Xue-Zhong & Hommes, Cars, 2006. "A dynamic analysis of moving average rules," Journal of Economic Dynamics and Control, Elsevier, vol. 30(9-10), pages 1729-1753.
    8. Chang, Sheng-Kai, 2007. "A simple asset pricing model with social interactions and heterogeneous beliefs," Journal of Economic Dynamics and Control, Elsevier, vol. 31(4), pages 1300-1325, April.
    9. Harrison Hong & Jeffrey D. Kubik & Jeremy C. Stein, 2004. "Social Interaction and Stock-Market Participation," Journal of Finance, American Finance Association, vol. 59(1), pages 137-163, February.
    10. Jeffrey R. Brown & Zoran Ivkovic & Paul A. Smith & Scott Weisbenner, 2008. "Neighbors Matter: Causal Community Effects and Stock Market Participation," Journal of Finance, American Finance Association, vol. 63(3), pages 1509-1531, June.
    11. Lo, Andrew W, 1991. "Long-Term Memory in Stock Market Prices," Econometrica, Econometric Society, vol. 59(5), pages 1279-1313, September.
    12. Dieci, Roberto & Westerhoff, Frank, 2010. "Heterogeneous speculators, endogenous fluctuations and interacting markets: A model of stock prices and exchange rates," Journal of Economic Dynamics and Control, Elsevier, vol. 34(4), pages 743-764, April.
    13. Sushil Bikhchandani & David Hirshleifer & Ivo Welch, 1998. "Learning from the Behavior of Others: Conformity, Fads, and Informational Cascades," Journal of Economic Perspectives, American Economic Association, vol. 12(3), pages 151-170, Summer.
    14. Steven X. Wei & Chu Zhang, 2006. "Why Did Individual Stocks Become More Volatile?," The Journal of Business, University of Chicago Press, vol. 79(1), pages 259-292, January.
    15. Farmer, J. Doyne & Joshi, Shareen, 2002. "The price dynamics of common trading strategies," Journal of Economic Behavior & Organization, Elsevier, vol. 49(2), pages 149-171, October.
    16. LeBaron, Blake, 2006. "Agent-based Computational Finance," Handbook of Computational Economics,in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 24, pages 1187-1233 Elsevier.
    17. Michael Milakovic & Simone Alfarano, 2007. "Should Network Structure Matter in Agent-Based Finance?," Working Papers wp07-02, Warwick Business School, Finance Group.
    18. Bikhchandani, Sushil & Hirshleifer, David & Welch, Ivo, 1992. "A Theory of Fads, Fashion, Custom, and Cultural Change in Informational Cascades," Journal of Political Economy, University of Chicago Press, vol. 100(5), pages 992-1026, October.
    19. Lux, Thomas, 1995. "Herd Behaviour, Bubbles and Crashes," Economic Journal, Royal Economic Society, vol. 105(431), pages 881-896, July.
    20. Shiller, 021Robert J. & Pound, John, 1989. "Survey evidence on diffusion of interest and information among investors," Journal of Economic Behavior & Organization, Elsevier, vol. 12(1), pages 47-66, August.
    21. Carl Chiarella & Roberto Dieci & Laura Gardini, 2005. "The Dynamic Interaction of Speculation and Diversification," Applied Mathematical Finance, Taylor & Francis Journals, vol. 12(1), pages 17-52.
    22. Mark Bowden & Stuart McDonald, 2008. "The Impact of Interaction and Social Learning on Aggregate Expectations," Computational Economics, Springer;Society for Computational Economics, vol. 31(3), pages 289-306, April.
    23. Hommes, Cars H., 2006. "Heterogeneous Agent Models in Economics and Finance," Handbook of Computational Economics,in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 23, pages 1109-1186 Elsevier.
    24. Alfarano, Simone & Milakovic, Mishael, 2009. "Network structure and N-dependence in agent-based herding models," Journal of Economic Dynamics and Control, Elsevier, vol. 33(1), pages 78-92, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Theophilos Papadimitriou & Periklis Gogas & Georgios Antonios Sarantitis, 2016. "Convergence of European Business Cycles: A Complex Networks Approach," Computational Economics, Springer;Society for Computational Economics, vol. 47(2), pages 97-119, February.
    2. Mark Bowden, 2015. "A model of information flows and confirmatory bias in financial markets," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 38(2), pages 197-215, October.
    3. Zhao, Laijun & Wang, Jiajia & Huang, Rongbing & Cui, Hongxin & Qiu, Xiaoyan & Wang, Xiaoli, 2014. "Sentiment contagion in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 17-23.

    More about this item

    Keywords

    Agent based financial markets; Network economics; Information contagion; Volatility; Kurtosis;

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
    • D84 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Expectations; Speculations

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmacro:v:34:y:2012:i:2:p:553-566. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/inca/622617 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.