IDEAS home Printed from https://ideas.repec.org/a/eee/jetheo/v160y2015icp56-71.html
   My bibliography  Save this article

Rational behavior under correlated uncertainty

Author

Listed:
  • Frick, Mira
  • Romm, Assaf

Abstract

In complete information games, Dekel and Fudenberg (1990) and Börgers (1994) have proposed the solution concept S∞W (one round of elimination of weakly dominated strategies followed by iterated elimination of strongly dominated strategies), motivating it by a characterization in terms of “approximate common certainty” of admissibility. We examine the validity of this characterization of S∞W in an incomplete information setting. We argue that in Bayesian games with a nontrivial state space, the characterization is very sensitive to the way in which uncertainty in the form of approximate common certainty of admissibility is taken to interact with the uncertainty already captured by players' beliefs about the states of nature: We show that S∞W corresponds to approximate common certainty of admissibility when this is not allowed to coincide with any changes to players' beliefs about states. If approximate common certainty of admissibility is accompanied by vanishingly small perturbations to beliefs, then S∞W is a (generally strict) subset of the predicted behavior, which we characterize in terms of a generalization of Hu's (2007) perfect p-rationalizable set.

Suggested Citation

  • Frick, Mira & Romm, Assaf, 2015. "Rational behavior under correlated uncertainty," Journal of Economic Theory, Elsevier, vol. 160(C), pages 56-71.
  • Handle: RePEc:eee:jetheo:v:160:y:2015:i:c:p:56-71
    DOI: 10.1016/j.jet.2015.08.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0022053115001684
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Borgers Tilman, 1994. "Weak Dominance and Approximate Common Knowledge," Journal of Economic Theory, Elsevier, vol. 64(1), pages 265-276, October.
    2. Hu, Tai-Wei, 2007. "On p-rationalizability and approximate common certainty of rationality," Journal of Economic Theory, Elsevier, vol. 136(1), pages 379-391, September.
    3. Drew Fudenberg & David M. Kreps & David K. Levine, 2008. "On the Robustness of Equilibrium Refinements," World Scientific Book Chapters,in: A Long-Run Collaboration On Long-Run Games, chapter 5, pages 67-93 World Scientific Publishing Co. Pte. Ltd..
    4. Adam Brandenburger & Eddie Dekel, 2014. "Hierarchies of Beliefs and Common Knowledge," World Scientific Book Chapters,in: The Language of Game Theory Putting Epistemics into the Mathematics of Games, chapter 2, pages 31-41 World Scientific Publishing Co. Pte. Ltd..
    5. Tan, Tommy Chin-Chiu & da Costa Werlang, Sergio Ribeiro, 1988. "The Bayesian foundations of solution concepts of games," Journal of Economic Theory, Elsevier, vol. 45(2), pages 370-391, August.
    6. Dekel, Eddie & Fudenberg, Drew, 1990. "Rational behavior with payoff uncertainty," Journal of Economic Theory, Elsevier, vol. 52(2), pages 243-267, December.
    7. Jonathan Weinstein & Muhamet Yildiz, 2007. "A Structure Theorem for Rationalizability with Application to Robust Predictions of Refinements," Econometrica, Econometric Society, vol. 75(2), pages 365-400, March.
    8. Battigalli Pierpaolo & Siniscalchi Marciano, 2003. "Rationalization and Incomplete Information," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 3(1), pages 1-46, June.
    9. Adam Brandenburger & Amanda Friedenberg & H. Jerome Keisler, 2014. "Admissibility in Games," World Scientific Book Chapters,in: The Language of Game Theory Putting Epistemics into the Mathematics of Games, chapter 7, pages 161-212 World Scientific Publishing Co. Pte. Ltd..
    10. Kohlberg, Elon & Mertens, Jean-Francois, 1986. "On the Strategic Stability of Equilibria," Econometrica, Econometric Society, vol. 54(5), pages 1003-1037, September.
    11. Frank Schuhmacher, 1999. "Proper rationalizability and backward induction," International Journal of Game Theory, Springer;Game Theory Society, vol. 28(4), pages 599-615.
    12. Atsushi Kajii & Stephen Morris, 1997. "The Robustness of Equilibria to Incomplete Information," Econometrica, Econometric Society, vol. 65(6), pages 1283-1310, November.
    13. Pearce, David G, 1984. "Rationalizable Strategic Behavior and the Problem of Perfection," Econometrica, Econometric Society, vol. 52(4), pages 1029-1050, July.
    14. Dekel, Eddie & Fudenberg, Drew & Morris, Stephen, 2007. "Interim correlated rationalizability," Theoretical Economics, Econometric Society, vol. 2(1), pages 15-40, March.
    15. Battigalli, Pierpaolo, 2003. "Rationalizability in infinite, dynamic games with incomplete information," Research in Economics, Elsevier, vol. 57(1), pages 1-38, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tilman Börgers & Jiangtao Li, 2018. "Strategically Simple Mechanisms," CESifo Working Paper Series 6844, CESifo Group Munich.

    More about this item

    Keywords

    Rationality; Admissibility; Approximate common certainty; Common p-belief; Incomplete information; Robustness;

    JEL classification:

    • C70 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - General
    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jetheo:v:160:y:2015:i:c:p:56-71. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/inca/622869 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.