IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Robust Equilibria under Non-Common Priors

  • Daisuke Oyama
  • Olivier Tercieux

This paper considers the robustness of equilibria to a small amount of incomplete information, where players are allowed to have heterogenous priors. An equilibrium of a complete information game is robust to incomplete information under non-common priors if for every incomplete information game where each player's prior assigns high probability on the event that the players know at arbitrarily high order that the payoffs are given by the complete information game, there exists a Bayesian Nash equilibrium that generates behavior close to the equilibrium in consideration. It is shown that for generic games, an equilibrium is robust under non-common priors if and only if it is the unique rationalizable action profile. Set-valued concepts are also introduced, and for generic games, a smallest robust set is shown to exist and coincide with the set of a posteriori equilibria.

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.econ.hit-u.ac.jp/~oyama/papers/rbstNCP.070627.pdf
Download Restriction: no

Paper provided by UCLA Department of Economics in its series Levine's Bibliography with number 843644000000000210.

as
in new window

Length:
Date of creation: 22 Jul 2007
Date of revision:
Handle: RePEc:cla:levrem:843644000000000210
Contact details of provider: Web page: http://www.dklevine.com/

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Atsushi Kajii & Stephen Morris, . "The Robustness of Equilibria to Incomplete Information," Penn CARESS Working Papers ed504c985fc375cbe719b3f60, Penn Economics Department.
  2. E. Kohlberg & J.-F. Mertens, 1998. "On the Strategic Stability of Equilibria," Levine's Working Paper Archive 445, David K. Levine.
  3. Adam Brandenburger & Eddie Dekel, 2014. "Rationalizability and Correlated Equilibria," World Scientific Book Chapters, in: The Language of Game Theory Putting Epistemics into the Mathematics of Games, chapter 3, pages 43-57 World Scientific Publishing Co. Pte. Ltd..
  4. Eddie Dekel & Drew Fudenberg & David K Levine, 2002. "Learning to Play Bayesian Games," Levine's Working Paper Archive 625018000000000151, David K. Levine.
  5. Oyama, Daisuke & Tercieux, Olivier, 2004. "Iterated Potential and Robustness of Equilibria," MPRA Paper 1599, University Library of Munich, Germany.
  6. P. Battigalli & M. Siniscalchi, 2002. "Rationalization and Incomplete Information," Princeton Economic Theory Working Papers 9817a118e65062903de7c3577, David K. Levine.
  7. Levine, David & Kreps, David & Fudenberg, Drew, 1988. "On the Robustness of Equilibrium Refinements," Scholarly Articles 3350444, Harvard University Department of Economics.
  8. S. Morris & R. Rob & H. Shin, 2010. "p-dominance and Belief Potential," Levine's Working Paper Archive 505, David K. Levine.
  9. AUMANN, Robert J., . "Subjectivity and correlation in randomized strategies," CORE Discussion Papers RP 167, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  10. smorris & Takashi Ui, 2004. "Generalized Potentials and Robust Sets of Equilibria," Econometric Society 2004 North American Winter Meetings 45, Econometric Society.
  11. Oyama, Daisuke & Tercieux, Olivier, 2012. "On the strategic impact of an event under non-common priors," Games and Economic Behavior, Elsevier, vol. 74(1), pages 321-331.
  12. Jonathan Weinstein & Muhamet Yildiz, 2007. "A Structure Theorem for Rationalizability with Application to Robust Predictions of Refinements," Econometrica, Econometric Society, vol. 75(2), pages 365-400, 03.
  13. Eddie Dekel & Drew Fudenberg & Stephen Morris, 2006. "Interim Correlated Rationalizability," Levine's Bibliography 122247000000001188, UCLA Department of Economics.
  14. Barton L. Lipman, 2003. "Finite Order Implications of Common Priors," Econometrica, Econometric Society, vol. 71(4), pages 1255-1267, 07.
  15. Lipman, Barton L., 2010. "Finite order implications of common priors in infinite models," Journal of Mathematical Economics, Elsevier, vol. 46(1), pages 56-70, January.
  16. Jonathan Weinstein & Muhamet Yildiz, 2004. "Finite-Order Implications of Any Equilibrium," Levine's Working Paper Archive 122247000000000065, David K. Levine.
  17. R. Aumann, 2010. "Correlated Equilibrium as an expression of Bayesian Rationality," Levine's Bibliography 513, UCLA Department of Economics.
  18. Adam Brandenburger & Eddie Dekel, 2014. "Hierarchies of Beliefs and Common Knowledge," World Scientific Book Chapters, in: The Language of Game Theory Putting Epistemics into the Mathematics of Games, chapter 2, pages 31-41 World Scientific Publishing Co. Pte. Ltd..
  19. Monderer, Dov & Samet, Dov, 1989. "Approximating common knowledge with common beliefs," Games and Economic Behavior, Elsevier, vol. 1(2), pages 170-190, June.
  20. Ui, Takashi, 2001. "Robust Equilibria of Potential Games," Econometrica, Econometric Society, vol. 69(5), pages 1373-80, September.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cla:levrem:843644000000000210. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (David K. Levine)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.