IDEAS home Printed from https://ideas.repec.org/a/eee/jetheo/v113y2003i2p286-301.html
   My bibliography  Save this article

A multinomial probit model of stochastic evolution

Author

Listed:
  • Myatt, David P.
  • Wallace, Chris

Abstract

A strategy revision process in symmetric normal form games is proposed. Following Kandori, Mailath, and Rob (1993), members of a population periodically revise their strategy choice, and choose a myopic best response to currently observed play. Their payoffs are perturbed by normally distributed Harsanyian (1973) trembles, so that strategies are chosen according to multinomial probit probabilities. As the variance of payoffs is allowed to vanish, the graph theoretic methods of the earlier literature continue to apply. The distributional assumption enables a convenient closed form characterisation for the weights of the rooted trees. An illustration of the approach is offered, via a consideration of the role of dominated strategies in equilibrium selection.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Myatt, David P. & Wallace, Chris, 2003. "A multinomial probit model of stochastic evolution," Journal of Economic Theory, Elsevier, vol. 113(2), pages 286-301, December.
  • Handle: RePEc:eee:jetheo:v:113:y:2003:i:2:p:286-301
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0022-0531(03)00069-3
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. John C. Harsanyi & Reinhard Selten, 1988. "A General Theory of Equilibrium Selection in Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262582384, January.
    2. Glenn Ellison, 2000. "Basins of Attraction, Long-Run Stochastic Stability, and the Speed of Step-by-Step Evolution," Review of Economic Studies, Oxford University Press, vol. 67(1), pages 17-45.
    3. Bergin, James & Lipman, Barton L, 1996. "Evolution with State-Dependent Mutations," Econometrica, Econometric Society, pages 943-956.
    4. Morris, Stephen & Rob, Rafael & Shin, Hyun Song, 1995. "Dominance and Belief Potential," Econometrica, Econometric Society, vol. 63(1), pages 145-157, January.
    5. Kandori, Michihiro & Mailath, George J & Rob, Rafael, 1993. "Learning, Mutation, and Long Run Equilibria in Games," Econometrica, Econometric Society, pages 29-56.
    6. Young, H Peyton, 1993. "The Evolution of Conventions," Econometrica, Econometric Society, vol. 61(1), pages 57-84, January.
    7. Maruta, Toshimasa, 1997. "On the Relationship between Risk-Dominance and Stochastic Stability," Games and Economic Behavior, Elsevier, vol. 19(2), pages 221-234, May.
    8. Fernando Vega-Redondo, 1997. "The Evolution of Walrasian Behavior," Econometrica, Econometric Society, vol. 65(2), pages 375-384, March.
    9. Myatt, David P. & Wallace, Chris C., 2004. "Adaptive play by idiosyncratic agents," Games and Economic Behavior, Elsevier, vol. 48(1), pages 124-138, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alós-Ferrer, Carlos & Netzer, Nick, 2010. "The logit-response dynamics," Games and Economic Behavior, Elsevier, vol. 68(2), pages 413-427, March.
    2. Myatt, David P. & Wallace, Chris, 2008. "An evolutionary analysis of the volunteer's dilemma," Games and Economic Behavior, Elsevier, vol. 62(1), pages 67-76, January.
    3. Simon Weidenholzer, 2010. "Coordination Games and Local Interactions: A Survey of the Game Theoretic Literature," Games, MDPI, Open Access Journal, vol. 1(4), pages 1-35, November.
    4. Newton, Jonathan & Sawa, Ryoji, 2015. "A one-shot deviation principle for stability in matching problems," Journal of Economic Theory, Elsevier, vol. 157(C), pages 1-27.
    5. Dokumacı, Emin & Sandholm, William H., 2011. "Large deviations and multinomial probit choice," Journal of Economic Theory, Elsevier, vol. 146(5), pages 2151-2158.
    6. Staudigl, Mathias, 2012. "Stochastic stability in asymmetric binary choice coordination games," Games and Economic Behavior, Elsevier, vol. 75(1), pages 372-401.
    7. Kim, Chongmin & Wong, Kam-Chau, 2010. "Long-run equilibria with dominated strategies," Games and Economic Behavior, Elsevier, vol. 68(1), pages 242-254, January.
    8. Klaus, Bettina & Newton, Jonathan, 2016. "Stochastic stability in assignment problems," Journal of Mathematical Economics, Elsevier, pages 62-74.
    9. Carlos Alós-Ferrer & Nick Netzer, 2015. "Robust stochastic stability," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 58(1), pages 31-57, January.
    10. Sandholm, William H. & Staudigl, Mathias, 2016. "Large Deviations and Stochastic Stability in the Small Noise Double Limit, I: Theory," Center for Mathematical Economics Working Papers 505, Center for Mathematical Economics, Bielefeld University.
    11. Staudigl, Mathias, 2011. "Potential games in volatile environments," Games and Economic Behavior, Elsevier, pages 271-287.
    12. Kevin Hasker, 2014. "The Emergent Seed: A Representation Theorem for Models of Stochastic Evolution and two formulas for Waiting Time," Levine's Working Paper Archive 786969000000000954, David K. Levine.
    13. Sandholm, William H. & Staudigl, Mathias, 2016. "Large Deviations and Stochastic Stability in the Small Noise Double Limit, II: The Logit Model," Center for Mathematical Economics Working Papers 506, Center for Mathematical Economics, Bielefeld University.
    14. Akira Okada & Ryoji Sawa, 2016. "An evolutionary approach to social choice problems with q-quota rules," KIER Working Papers 936, Kyoto University, Institute of Economic Research.

    More about this item

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jetheo:v:113:y:2003:i:2:p:286-301. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/inca/622869 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.