IDEAS home Printed from https://ideas.repec.org/a/eee/jbrese/v180y2024ics0148296324002236.html
   My bibliography  Save this article

Voice of the Professional: Acquiring competitive intelligence from large-scale professional generated contents

Author

Listed:
  • Qian, Yang
  • Ling, Haifeng
  • Meng, Xiangrui
  • Jiang, Yuanchun
  • Chai, Yidong
  • Liu, Yezheng

Abstract

Professional generated content (PGC) serves as a vital and reliable online source that provides large-scale information about various aspects of brands and products. This study focuses on acquiring product-level competitive intelligence from large-scale PGCs. Specifically, we aim to simultaneously identify competitive relationships among products, extract representative topics shared by competing products, and estimate content preferences. To this end, we present a topic model that jointly leverages textual content and their associated product tags in PGCs. Owing to large-scale and lengthy PGCs, we propose a collapsed variational Bayesian inference algorithm to improve the model learning. We analyze over 100,000 PGCs and 3,000 associated products for empirical application in automobiles. Experimental results show that the proposed approach can accurately analyze market competition. Our findings have significant implications for product managers, enabling them to identify competitors, assess experts’ opinions on their products and competitors, and select high-quality content creators to improve promotions.

Suggested Citation

  • Qian, Yang & Ling, Haifeng & Meng, Xiangrui & Jiang, Yuanchun & Chai, Yidong & Liu, Yezheng, 2024. "Voice of the Professional: Acquiring competitive intelligence from large-scale professional generated contents," Journal of Business Research, Elsevier, vol. 180(C).
  • Handle: RePEc:eee:jbrese:v:180:y:2024:i:c:s0148296324002236
    DOI: 10.1016/j.jbusres.2024.114719
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0148296324002236
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jbusres.2024.114719?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Yezheng & Qian, Yang & Jiang, Yuanchun & Shang, Jennifer, 2020. "Using favorite data to analyze asymmetric competition: Machine learning models," European Journal of Operational Research, Elsevier, vol. 287(2), pages 600-615.
    2. Artem Timoshenko & John R. Hauser, 2019. "Identifying Customer Needs from User-Generated Content," Marketing Science, INFORMS, vol. 38(1), pages 1-20, January.
    3. Davcik, Nebojsa S. & Sharma, Piyush, 2016. "Marketing resources, performance, and competitive advantage: A review and future research directions," Journal of Business Research, Elsevier, vol. 69(12), pages 5547-5552.
    4. Paramveer S. Dhillon & Sinan Aral, 2021. "Modeling Dynamic User Interests: A Neural Matrix Factorization Approach," Marketing Science, INFORMS, vol. 40(6), pages 1059-1080, November.
    5. Mark Bergen & Margaret A. Peteraf, 2002. "Competitor identification and competitor analysis: a broad-based managerial approach," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 23(4-5), pages 157-169.
    6. Sebastian Gabel & Artem Timoshenko, 2022. "Product Choice with Large Assortments: A Scalable Deep-Learning Model," Management Science, INFORMS, vol. 68(3), pages 1808-1827, March.
    7. Fernando Branco & Monic Sun & J. Miguel Villas-Boas, 2016. "Too Much Information? Information Provision and Search Costs," Marketing Science, INFORMS, vol. 35(4), pages 605-618, July.
    8. Martin, Silvia L. & Javalgi, Rajshekhar (Raj) G. & Ciravegna, Luciano, 2018. "Service advantage built on service capabilities: An empirical inquiry of international new ventures," Journal of Business Research, Elsevier, vol. 88(C), pages 371-381.
    9. Rami Zwick & Amnon Rapoport & Alison King Chung Lo & A. V. Muthukrishnan, 2003. "Consumer Sequential Search: Not Enough or Too Much?," Marketing Science, INFORMS, vol. 22(4), pages 503-519, October.
    10. Kim, Wonjoon & Kim, Minki, 2015. "Reference quality-based competitive market structure for innovation driven markets," International Journal of Research in Marketing, Elsevier, vol. 32(3), pages 284-296.
    11. Zhiqiang (Eric) Zheng & Peter Fader & Balaji Padmanabhan, 2012. "From Business Intelligence to Competitive Intelligence: Inferring Competitive Measures Using Augmented Site-Centric Data," Information Systems Research, INFORMS, vol. 23(3-part-1), pages 698-720, September.
    12. Dmitri Kuksov & Chenxi Liao, 2019. "Opinion Leaders and Product Variety," Marketing Science, INFORMS, vol. 38(5), pages 812-834, September.
    13. V. Kumar & Alok R. Saboo & Amit Agarwal & Binay Kumar, 2020. "Generating Competitive Intelligence with Limited Information: A Case of the Multimedia Industry," Production and Operations Management, Production and Operations Management Society, vol. 29(1), pages 192-213, January.
    14. repec:oup:jconrs:v:47:y:2021:i:5:p:654-674. is not listed on IDEAS
    15. Jaeger, Lena-Christin & Höhler, Julia, 2021. "Using word of mouth data from social media to identify asymmetric competition in food retailing," Journal of Retailing and Consumer Services, Elsevier, vol. 58(C).
    16. Jake Hoskins & Shyam Gopinath & J. Cameron Verhaal & Elham Yazdani, 2021. "The influence of the online community, professional critics, and location similarity on review ratings for niche and mainstream brands," Journal of the Academy of Marketing Science, Springer, vol. 49(6), pages 1065-1087, November.
    17. Jain, Dipak C. & Rao, Ram C., 1994. "Latent class models to infer market structure: A comparative analysis," European Journal of Operational Research, Elsevier, vol. 76(2), pages 331-343, July.
    18. David M. Blei & Alp Kucukelbir & Jon D. McAuliffe, 2017. "Variational Inference: A Review for Statisticians," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 859-877, April.
    19. Nitin Mehta & Surendra Rajiv & Kannan Srinivasan, 2003. "Price Uncertainty and Consumer Search: A Structural Model of Consideration Set Formation," Marketing Science, INFORMS, vol. 22(1), pages 58-84, June.
    20. Asim Ansari & Yang Li & Jonathan Z. Zhang, 2018. "Probabilistic Topic Model for Hybrid Recommender Systems: A Stochastic Variational Bayesian Approach," Marketing Science, INFORMS, vol. 37(6), pages 987-1008, November.
    21. Tingting Song & Jinghua Huang & Yong Tan & Yifan Yu, 2019. "Using User- and Marketer-Generated Content for Box Office Revenue Prediction: Differences Between Microblogging and Third-Party Platforms," Service Science, INFORMS, vol. 30(1), pages 191-203, March.
    22. Dokyun Lee & Kartik Hosanagar & Harikesh S. Nair, 2018. "Advertising Content and Consumer Engagement on Social Media: Evidence from Facebook," Management Science, INFORMS, vol. 64(11), pages 5105-5131, November.
    23. Daniel M. Ringel & Bernd Skiera, 2016. "Visualizing Asymmetric Competition Among More Than 1,000 Products Using Big Search Data," Marketing Science, INFORMS, vol. 35(3), pages 511-534, May.
    24. Matthijs Meire & Kelly Hewett & Michel Ballings & V. Kumar & Dirk van den Poel, 2019. "The Role of Marketer-Generated Content in Customer Engagement Marketing," Post-Print hal-02509303, HAL.
    25. Khim-Yong Goh & Cheng-Suang Heng & Zhijie Lin, 2013. "Social Media Brand Community and Consumer Behavior: Quantifying the Relative Impact of User- and Marketer-Generated Content," Information Systems Research, INFORMS, vol. 24(1), pages 88-107, March.
    26. Tülin Erdem, 1996. "A Dynamic Analysis of Market Structure Based on Panel Data," Marketing Science, INFORMS, vol. 15(4), pages 359-378.
    27. Nishikawa, Hidehiko & Schreier, Martin & Ogawa, Susumu, 2013. "User-generated versus designer-generated products: A performance assessment at Muji," International Journal of Research in Marketing, Elsevier, vol. 30(2), pages 160-167.
    28. Zhihong Ke & De Liu & Daniel J. Brass, 2020. "Do Online Friends Bring Out the Best in Us? The Effect of Friend Contributions on Online Review Provision," Information Systems Research, INFORMS, vol. 31(4), pages 1322-1336, December.
    29. Jung Ah Han & Elea McDonnell Feit & Shuba Srinivasan, 2020. "Can negative buzz increase awareness and purchase intent?," Marketing Letters, Springer, vol. 31(1), pages 89-104, March.
    30. Yang Qian & Yuanchun Jiang & Yanan Du & Jianshan Sun & Yezheng Liu, 2020. "Segmenting market structure from multi-channel clickstream data: a novel generative model," Electronic Commerce Research, Springer, vol. 20(3), pages 509-533, September.
    31. Oded Netzer & Ronen Feldman & Jacob Goldenberg & Moshe Fresko, 2012. "Mine Your Own Business: Market-Structure Surveillance Through Text Mining," Marketing Science, INFORMS, vol. 31(3), pages 521-543, May.
    32. Zhang, Yuchi & Moe, Wendy W. & Schweidel, David A., 2017. "Modeling the role of message content and influencers in social media rebroadcasting," International Journal of Research in Marketing, Elsevier, vol. 34(1), pages 100-119.
    33. Kumar, Vivek & Srivastava, Arpita, 2022. "Trends in the thematic landscape of corporate social responsibility research: A structural topic modeling approach," Journal of Business Research, Elsevier, vol. 150(C), pages 26-37.
    34. Birim, Şule Öztürk & Kazancoglu, Ipek & Kumar Mangla, Sachin & Kahraman, Aysun & Kumar, Satish & Kazancoglu, Yigit, 2022. "Detecting fake reviews through topic modelling," Journal of Business Research, Elsevier, vol. 149(C), pages 884-900.
    35. Damangir, Sina & Du, Rex Yuxing & Hu, Ye, 2018. "Uncovering Patterns of Product Co-consideration: A Case Study of Online Vehicle Price Quote Request Data," Journal of Interactive Marketing, Elsevier, vol. 42(C), pages 1-17.
    36. Michael Luca & Georgios Zervas, 2016. "Fake It Till You Make It: Reputation, Competition, and Yelp Review Fraud," Management Science, INFORMS, vol. 62(12), pages 3412-3427, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Meihua & Angelopoulos, Spyros & Ou, Carol & Liu, Hongwei & Liang, Zhouyang, 2023. "Optimization of dynamic product offerings on online marketplaces: A network theory perspective," Other publications TiSEM 75d71155-88bf-4ff7-aba1-9, Tilburg University, School of Economics and Management.
    2. Ratchford, Brian & Soysal, Gonca & Zentner, Alejandro & Gauri, Dinesh K., 2022. "Online and offline retailing: What we know and directions for future research," Journal of Retailing, Elsevier, vol. 98(1), pages 152-177.
    3. Ning Zhong & David A. Schweidel, 2020. "Capturing Changes in Social Media Content: A Multiple Latent Changepoint Topic Model," Marketing Science, INFORMS, vol. 39(4), pages 827-846, July.
    4. Nima Jalali & Sangkil Moon & Moon-Yong Kim, 2023. "Profiling diverse reviewer segments using online reviews of service industries," Journal of Marketing Analytics, Palgrave Macmillan, vol. 11(2), pages 130-148, June.
    5. Tingting Song & Jinghua Huang & Yong Tan & Yifan Yu, 2019. "Using User- and Marketer-Generated Content for Box Office Revenue Prediction: Differences Between Microblogging and Third-Party Platforms," Service Science, INFORMS, vol. 30(1), pages 191-203, March.
    6. Ma, Liye & Sun, Baohong, 2020. "Machine learning and AI in marketing – Connecting computing power to human insights," International Journal of Research in Marketing, Elsevier, vol. 37(3), pages 481-504.
    7. Shimi Naurin Ahmad & Michel Laroche, 2023. "Extracting marketing information from product reviews: a comparative study of latent semantic analysis and probabilistic latent semantic analysis," Journal of Marketing Analytics, Palgrave Macmillan, vol. 11(4), pages 662-676, December.
    8. Wang, Fei & Xu, Haifeng & Hou, Ronglin & Zhu, Zhen, 2023. "Designing marketing content for social commerce to drive consumer purchase behaviors: A perspective from speech act theory," Journal of Retailing and Consumer Services, Elsevier, vol. 70(C).
    9. Hartmann, Jochen & Huppertz, Juliana & Schamp, Christina & Heitmann, Mark, 2019. "Comparing automated text classification methods," International Journal of Research in Marketing, Elsevier, vol. 36(1), pages 20-38.
    10. Zelin Zhang & Kejia Yang & Jonathan Z. Zhang & Robert W. Palmatier, 2023. "Uncovering Synergy and Dysergy in Consumer Reviews: A Machine Learning Approach," Management Science, INFORMS, vol. 69(4), pages 2339-2360, April.
    11. Jifeng Mu & Jonathan Zhang & Abhishek Borah & Jiayin Qi, 2022. "Creative Appeals in Firm-Generated Content and Product Performance," Information Systems Research, INFORMS, vol. 33(1), pages 18-42, March.
    12. Daniel M. Ringel & Bernd Skiera, 2016. "Visualizing Asymmetric Competition Among More Than 1,000 Products Using Big Search Data," Marketing Science, INFORMS, vol. 35(3), pages 511-534, May.
    13. Oliver Schaer & Nikolaos Kourentzes & Robert Fildes, 2022. "Predictive competitive intelligence with prerelease online search traffic," Production and Operations Management, Production and Operations Management Society, vol. 31(10), pages 3823-3839, October.
    14. Alex Burnap & John R. Hauser & Artem Timoshenko, 2019. "Product Aesthetic Design: A Machine Learning Augmentation," Papers 1907.07786, arXiv.org, revised Nov 2022.
    15. Abouk, Rahi & Jalali, Nima & Papatla, Purushottam, 2024. "Can tweets be word of mouth that changes risky behaviors?," Journal of Business Research, Elsevier, vol. 174(C).
    16. Moon, Sangkil & Kim, Moon-Yong & Bergey, Paul K., 2019. "Estimating deception in consumer reviews based on extreme terms: Comparison analysis of open vs. closed hotel reservation platforms," Journal of Business Research, Elsevier, vol. 102(C), pages 83-96.
    17. Blanca I. Hernández-Ortega & Michael A. Stanko & Rishika Rishika & Francisco-Jose Molina-Castillo & José Franco, 2022. "Brand-generated social media content and its differential impact on loyalty program members," Journal of the Academy of Marketing Science, Springer, vol. 50(5), pages 1071-1090, September.
    18. Penttinen, Valeria, 2023. "Hi, I’m taking over this account! Leveraging social media takeovers in fostering consumer-brand relationships," Journal of Business Research, Elsevier, vol. 165(C).
    19. de Haan, Evert & Padigar, Manjunath & El Kihal, Siham & Kübler, Raoul & Wieringa, Jaap E., 2024. "Unstructured data research in business: Toward a structured approach," Journal of Business Research, Elsevier, vol. 177(C).
    20. Yang Qian & Yuanchun Jiang & Yanan Du & Jianshan Sun & Yezheng Liu, 2020. "Segmenting market structure from multi-channel clickstream data: a novel generative model," Electronic Commerce Research, Springer, vol. 20(3), pages 509-533, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbrese:v:180:y:2024:i:c:s0148296324002236. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbusres .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.