IDEAS home Printed from https://ideas.repec.org/a/eee/jbrese/v133y2021icp34-50.html

Big data and human resource management research: An integrative review and new directions for future research

Author

Listed:
  • Zhang, Yucheng
  • Xu, Shan
  • Zhang, Long
  • Yang, Mengxi

Abstract

The lack of sufficient big data-based approaches impedes the development of human resource management (HRM) research and practices. Although scholars have realized the importance of applying a big data approach to HRM research, clear guidance is lacking regarding how to integrate the two. Using a clustering algorithm based on the big data research paradigm, we first conduct a bibliometric review to quantitatively assess and scientifically map the evolution of the current big data HRM literature. Based on this systematic review, we propose a general theoretical framework described as “Inductive (Prediction paradigm: Data mining/Theory building) vs. Deductive (Explanation paradigm: Theory testing)”. In this framework, we discuss potential research questions, their corresponding levels of analysis, relevant methods, data sources and software. We then summarize the general procedures for conducting big data research within HRM research. Finally, we propose a future agenda for applying big data approaches to HRM research and identify five promising HRM research topics at the micro, meso and macro levels along with three challenges and limitations that HRM scholars may face in the era of big data.

Suggested Citation

  • Zhang, Yucheng & Xu, Shan & Zhang, Long & Yang, Mengxi, 2021. "Big data and human resource management research: An integrative review and new directions for future research," Journal of Business Research, Elsevier, vol. 133(C), pages 34-50.
  • Handle: RePEc:eee:jbrese:v:133:y:2021:i:c:p:34-50
    DOI: 10.1016/j.jbusres.2021.04.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0148296321002563
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jbusres.2021.04.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Yucheng Zhang & Long Zhang & Hui Lei & Yumeng Yue & Jingtao Zhu, 2016. "Lagged effect of daily surface acting on subsequent day’s fatigue," The Service Industries Journal, Taylor & Francis Journals, vol. 36(15-16), pages 809-826, December.
    2. Letina, Srebrenka, 2016. "Network and actor attribute effects on the performance of researchers in two fields of social science in a small peripheral community," Journal of Informetrics, Elsevier, vol. 10(2), pages 571-595.
    3. Ghaddar, Bissan & Naoum-Sawaya, Joe, 2018. "High dimensional data classification and feature selection using support vector machines," European Journal of Operational Research, Elsevier, vol. 265(3), pages 993-1004.
    4. Berk, Lauren & Bertsimas, Dimitris & Weinstein, Alexander M. & Yan, Julia, 2019. "Prescriptive analytics for human resource planning in the professional services industry," European Journal of Operational Research, Elsevier, vol. 272(2), pages 636-641.
    5. Shin, Dong-Hee, 2016. "Demystifying big data: Anatomy of big data developmental process," Telecommunications Policy, Elsevier, vol. 40(9), pages 837-854.
    6. Dimitris Bertsimas & Nathan Kallus, 2020. "From Predictive to Prescriptive Analytics," Management Science, INFORMS, vol. 66(3), pages 1025-1044, March.
    7. Tanujit Chakraborty & Swarup Chattopadhyay & Ashis Kumar Chakraborty, 2018. "A novel hybridization of classification trees and artificial neural networks for selection of students in a business school," OPSEARCH, Springer;Operational Research Society of India, vol. 55(2), pages 434-446, June.
    8. Chaomei Chen, 2006. "CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 57(3), pages 359-377, February.
    9. Constantiou, Ioanna D & Kallinikos, Jannis, 2015. "New games, new rules: big data and the changing context of strategy," LSE Research Online Documents on Economics 63017, London School of Economics and Political Science, LSE Library.
    10. Shah, Naimatullah & Irani, Zahir & Sharif, Amir M., 2017. "Big data in an HR context: Exploring organizational change readiness, employee attitudes and behaviors," Journal of Business Research, Elsevier, vol. 70(C), pages 366-378.
    11. Cipriano Santos & Tere Gonzalez & Haitao Li & Kay-Yut Chen & Dirk Beyer & Sundaresh Biligi & Qi Feng & Ravindra Kumar & Shelen Jain & Ranga Ramanujam & Alex Zhang, 2013. "HP Enterprise Services Uses Optimization for Resource Planning," Interfaces, INFORMS, vol. 43(2), pages 152-169, April.
    12. Sivarajah, Uthayasankar & Kamal, Muhammad Mustafa & Irani, Zahir & Weerakkody, Vishanth, 2017. "Critical analysis of Big Data challenges and analytical methods," Journal of Business Research, Elsevier, vol. 70(C), pages 263-286.
    13. Rohrer, Julia M. & Brümmer, Martin & Schmukle, Stefan C. & Goebel, Jan & Wagner, Gert G., 2017. ""What else are you worried about?" – Integrating textual responses into quantitative social science research," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 12(7), pages 1-34.
    14. Hal R. Varian, 2014. "Big Data: New Tricks for Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 3-28, Spring.
    15. Atanu Sengupta & Sanjoy De, 2020. "Review of Literature," India Studies in Business and Economics, in: Assessing Performance of Banks in India Fifty Years After Nationalization, chapter 0, pages 15-30, Springer.
    16. Erevelles, Sunil & Fukawa, Nobuyuki & Swayne, Linda, 2016. "Big Data consumer analytics and the transformation of marketing," Journal of Business Research, Elsevier, vol. 69(2), pages 897-904.
    17. Wickham, Hadley, 2011. "The Split-Apply-Combine Strategy for Data Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 40(i01).
    18. Wang, Yichuan & Hajli, Nick, 2017. "Exploring the path to big data analytics success in healthcare," Journal of Business Research, Elsevier, vol. 70(C), pages 287-299.
    19. Tu, Chunming & He, Xi & Shuai, Zhikang & Jiang, Fei, 2017. "Big data issues in smart grid – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1099-1107.
    20. Blazquez, Desamparados & Domenech, Josep, 2018. "Big Data sources and methods for social and economic analyses," Technological Forecasting and Social Change, Elsevier, vol. 130(C), pages 99-113.
    21. Benjamin Edelman, 2012. "Using Internet Data for Economic Research," Journal of Economic Perspectives, American Economic Association, vol. 26(2), pages 189-206, Spring.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sergi, Bruno S. & Ključnikov, Aleksandr & Popkova, Elena G. & Bogoviz, Aleksei V. & Lobova, Svetlana V., 2022. "Creative abilities and digital competencies to transitioning to Business 4.0," Journal of Business Research, Elsevier, vol. 153(C), pages 401-411.
    2. Arab ul Mateen & Qasim Ali Nisar & Samia Jamshed & Sumaira Rehman & Muhammad Ali, 2025. "HRM Effectiveness as an Outcome of Big Data: The Role of Big Data–Driven HR Practices and Electronic HRM," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 16(3), pages 11339-11373, September.
    3. Chen, Yiran & Li, Jiaye & Tong, Yan & Jin, Laiqun, 2025. "Can big data inhibit earnings management in corporations? — An analysis based on national big data comprehensive pilot zones," Research in International Business and Finance, Elsevier, vol. 78(C).
    4. Dr. Zahra Ishtiaq Paul & Hafiz Muhammad Sohail Khan, 2024. "Reshaping the future of HR: Human Resource Analytics and Talent Management," Bulletin of Business and Economics (BBE), Research Foundation for Humanity (RFH), vol. 13(2), pages 332-340.
    5. Xu, Ning & Xu, Longchao & Yan, Xiang-Wu, 2025. "Data factor marketization empowering enterprise innovation quality: New evidence from Chinese patent citations," International Review of Economics & Finance, Elsevier, vol. 103(C).
    6. Stefania Capogna, 2023. "Sociology between big data and research frontiers, a challenge for educational policies and skills," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(1), pages 193-212, February.
    7. Mohd Mustafa Alfariz & Ariff Md Ab Malik & Anitawati Mohd Lokman, 2024. "Why Does It Fail? A Systematic Review of End-Users’ Challenges in Business Intelligence," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 8(11), pages 304-315, November.
    8. Chong, Woon Kian & Chang, Chiachi, 2024. "Information exploitation of human resource data with persistent homology," Journal of Business Research, Elsevier, vol. 172(C).
    9. Zhang, Wenyao & Zhang, Wei & Daim, Tugrul U, 2023. "The voluntary green behavior in green technology innovation: The dual effects of green human resource management system and leader green traits," Journal of Business Research, Elsevier, vol. 165(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sheng, Jie & Amankwah-Amoah, Joseph & Wang, Xiaojun, 2017. "A multidisciplinary perspective of big data in management research," International Journal of Production Economics, Elsevier, vol. 191(C), pages 97-112.
    2. Shet, Sateesh.V. & Poddar, Tanuj & Wamba Samuel, Fosso & Dwivedi, Yogesh K., 2021. "Examining the determinants of successful adoption of data analytics in human resource management – A framework for implications," Journal of Business Research, Elsevier, vol. 131(C), pages 311-326.
    3. de Camargo Fiorini, Paula & Roman Pais Seles, Bruno Michel & Chiappetta Jabbour, Charbel Jose & Barberio Mariano, Enzo & de Sousa Jabbour, Ana Beatriz Lopes, 2018. "Management theory and big data literature: From a review to a research agenda," International Journal of Information Management, Elsevier, vol. 43(C), pages 112-129.
    4. Brewis, Claire & Dibb, Sally & Meadows, Maureen, 2023. "Leveraging big data for strategic marketing: A dynamic capabilities model for incumbent firms," Technological Forecasting and Social Change, Elsevier, vol. 190(C).
    5. J. Piet Hausberg & Kirsten Liere-Netheler & Sven Packmohr & Stefanie Pakura & Kristin Vogelsang, 2019. "Research streams on digital transformation from a holistic business perspective: a systematic literature review and citation network analysis," Journal of Business Economics, Springer, vol. 89(8), pages 931-963, December.
    6. Ghasemaghaei, Maryam & Calic, Goran, 2020. "Assessing the impact of big data on firm innovation performance: Big data is not always better data," Journal of Business Research, Elsevier, vol. 108(C), pages 147-162.
    7. Purva Grover & Arpan Kumar Kar, 2017. "Big Data Analytics: A Review on Theoretical Contributions and Tools Used in Literature," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 18(3), pages 203-229, September.
    8. Ghasemaghaei, Maryam & Calic, Goran, 2019. "Does big data enhance firm innovation competency? The mediating role of data-driven insights," Journal of Business Research, Elsevier, vol. 104(C), pages 69-84.
    9. Liedong, Tahiru Azaaviele & Rajwani, Tazeeb & Lawton, Thomas C., 2020. "Information and nonmarket strategy: Conceptualizing the interrelationship between big data and corporate political activity," Technological Forecasting and Social Change, Elsevier, vol. 157(C).
    10. El-Haddadeh, Ramzi & Osmani, Mohamad & Hindi, Nitham & Fadlalla, Adam, 2021. "Value creation for realising the sustainable development goals: Fostering organisational adoption of big data analytics," Journal of Business Research, Elsevier, vol. 131(C), pages 402-410.
    11. Candice WALLS & Brian BARNARD, 2020. "Success Factors of Big Data to Achieve Organisational Performance: Theoretical Perspectives," Expert Journal of Business and Management, Sprint Investify, vol. 8(1), pages 1-16.
    12. Korayim, Diana & Chotia, Varun & Jain, Girish & Hassan, Sharfa & Paolone, Francesco, 2024. "How big data analytics can create competitive advantage in high-stake decision forecasting? The mediating role of organizational innovation," Technological Forecasting and Social Change, Elsevier, vol. 199(C).
    13. Anke Joubert & Matthias Murawski & Markus Bick, 2023. "Measuring the Big Data Readiness of Developing Countries – Index Development and its Application to Africa," Information Systems Frontiers, Springer, vol. 25(1), pages 327-350, February.
    14. Vanhala, Mika & Lu, Chien & Peltonen, Jaakko & Sundqvist, Sanna & Nummenmaa, Jyrki & Järvelin, Kalervo, 2020. "The usage of large data sets in online consumer behaviour: A bibliometric and computational text-mining–driven analysis of previous research," Journal of Business Research, Elsevier, vol. 106(C), pages 46-59.
    15. Luigi M. De Luca & Dennis Herhausen & Gabriele Troilo & Andrea Rossi, 2021. "How and when do big data investments pay off? The role of marketing affordances and service innovation," Journal of the Academy of Marketing Science, Springer, vol. 49(4), pages 790-810, July.
    16. Sidney Anderson, 2024. "Expanding data literacy to include data preparation: building a sound marketing analytics foundation," Journal of Marketing Analytics, Palgrave Macmillan, vol. 12(2), pages 227-234, June.
    17. Barbara Brenner, 2018. "Transformative Sustainable Business Models in the Light of the Digital Imperative—A Global Business Economics Perspective," Sustainability, MDPI, vol. 10(12), pages 1-25, November.
    18. Kim, Jaemin & Dibrell, Clay & Kraft, Ellen & Marshall, David, 2021. "Data analytics and performance: The moderating role of intuition-based HR management in major league baseball," Journal of Business Research, Elsevier, vol. 122(C), pages 204-216.
    19. Blasco-Arcas, Lorena & Lee, Hsin-Hsuan Meg & Kastanakis, Minas N. & Alcañiz, Mariano & Reyes-Menendez, Ana, 2022. "The role of consumer data in marketing: A research agenda," Journal of Business Research, Elsevier, vol. 146(C), pages 436-452.
    20. Thomas Niebel & Fabienne Rasel & Steffen Viete, 2019. "BIG data – BIG gains? Understanding the link between big data analytics and innovation," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 28(3), pages 296-316, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbrese:v:133:y:2021:i:c:p:34-50. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbusres .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.