IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v28y2012i3p587-606.html
   My bibliography  Save this article

A population dependent diffusion model with a stochastic extension

Author

Listed:
  • Michalakelis, C.
  • Sphicopoulos, T.

Abstract

Diffusion modeling is rather broad in nature, and is important in the areas of estimation and forecasting. Conventional models do not incorporate parameters that explicitly take into account the size of the population, or, equivalently, the size of the potential market. As a consequence, the models often fail to provide accurate forecasts, especially when the diffusion process is in the take-off stage. Furthermore, since diffusion is not a strictly deterministic process, forecasts should provide a measure of the underlying uncertainty of the process by incorporating a stochastic process into the formulation of the models.

Suggested Citation

  • Michalakelis, C. & Sphicopoulos, T., 2012. "A population dependent diffusion model with a stochastic extension," International Journal of Forecasting, Elsevier, vol. 28(3), pages 587-606.
  • Handle: RePEc:eee:intfor:v:28:y:2012:i:3:p:587-606
    DOI: 10.1016/j.ijforecast.2012.03.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207012000386
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2012.03.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michalakelis, Christos & Varoutas, Dimitris & Sphicopoulos, Thomas, 0. "Diffusion models of mobile telephony in Greece," Telecommunications Policy, Elsevier, vol. 32(3-4), pages 234-245, April.
    2. C. H. Skiadas & A. N. Giovanis, 1997. "A stochastic Bass innovation diffusion model for studying the growth of electricity consumption in Greece," Applied Stochastic Models and Data Analysis, John Wiley & Sons, vol. 13(2), pages 85-101, June.
    3. V. Kumar & Trichy V. Krishnan, 2002. "Multinational Diffusion Models: An Alternative Framework," Marketing Science, INFORMS, vol. 21(3), pages 318-330, July.
    4. Bewley, Ronald & Fiebig, Denzil G., 1988. "A flexible logistic growth model with applications in telecommunications," International Journal of Forecasting, Elsevier, vol. 4(2), pages 177-192.
    5. Gruber, Harald, 2001. "Competition and innovation: The diffusion of mobile telecommunications in Central and Eastern Europe," Information Economics and Policy, Elsevier, vol. 13(1), pages 19-34, March.
    6. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    7. Gruber, Harald & Verboven, Frank, 2001. "The diffusion of mobile telecommunications services in the European Union," European Economic Review, Elsevier, vol. 45(3), pages 577-588, March.
    8. Geroski, P. A., 2000. "Models of technology diffusion," Research Policy, Elsevier, vol. 29(4-5), pages 603-625, April.
    9. Venkatesan, Rajkumar & Kumar, V., 2002. "A genetic algorithms approach to growth phase forecasting of wireless subscribers," International Journal of Forecasting, Elsevier, vol. 18(4), pages 625-646.
    10. Modis, Theodore, 1994. "Determination of the Uncertainties in S-Curve Logistic Fits," OSF Preprints n53pd, Center for Open Science.
    11. Fildes, Robert & Kumar, V., 2002. "Telecommunications demand forecasting--a review," International Journal of Forecasting, Elsevier, vol. 18(4), pages 489-522.
    12. Hermann Singer, 1993. "Continuous‐Time Dynamical Systems With Sampled Data, Errors Of Measurement And Unobserved Components," Journal of Time Series Analysis, Wiley Blackwell, vol. 14(5), pages 527-545, September.
    13. Albert C. Bemmaor & Janghyuk Lee, 2002. "The Impact of Heterogeneity and Ill-Conditioning on Diffusion Model Parameter Estimates," Marketing Science, INFORMS, vol. 21(2), pages 209-220, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aggelos Skoufis & Georgios Chatzithanasis & Georgia Dede & Evangelia Filiopoulou & Thomas Kamalakis & Christos Michalakelis, 2023. "Technoeconomic assessment of an FTTH network investment in the Greek telecommunications market," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 82(2), pages 211-227, February.
    2. Aggelos Skoufis & Georgios Chatzithanasis & Georgia Dede & Thomas Kamalakis & Christos Michalakelis, 2020. "Technoeconomic analysis of a VDSL2/G.fast vectoring network: a case study from Greece," Netnomics, Springer, vol. 21(1), pages 83-101, December.
    3. Hattam, Laura & Greetham, Danica Vukadinović, 2018. "An innovation diffusion model of a local electricity network that is influenced by internal and external factors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 353-365.
    4. Singhal, Shakshi & Anand, Adarsh & Singh, Ompal, 2020. "Studying dynamic market size-based adoption modeling & product diffusion under stochastic environment," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    5. Rządkowski Grzegorz & Sobczak Lidia, 2020. "A Generalized Logistic Function and its Applications," Foundations of Management, Sciendo, vol. 12(1), pages 85-92, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meade, Nigel & Islam, Towhidul, 2006. "Modelling and forecasting the diffusion of innovation - A 25-year review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 519-545.
    2. Christos Michalakelis & Georgia Dede & Dimitris Varoutas & Thomas Sphicopoulos, 2010. "Estimating diffusion and price elasticity with application to telecommunications," Netnomics, Springer, vol. 11(3), pages 221-242, October.
    3. Fildes, Robert & Kumar, V., 2002. "Telecommunications demand forecasting--a review," International Journal of Forecasting, Elsevier, vol. 18(4), pages 489-522.
    4. Meade, Nigel & Islam, Towhidul, 2015. "Forecasting in telecommunications and ICT—A review," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1105-1126.
    5. Al-Alawi, Baha M. & Bradley, Thomas H., 2013. "Review of hybrid, plug-in hybrid, and electric vehicle market modeling Studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 190-203.
    6. Peters, Kay & Albers, Sönke & Kumar, V., 2008. "Is there more to international Diffusion than Culture? An investigation on the Role of Marketing and Industry Variables," EconStor Preprints 27678, ZBW - Leibniz Information Centre for Economics.
    7. Jha, Ashutosh & Saha, Debashis, 2020. "“Forecasting and analysing the characteristics of 3G and 4G mobile broadband diffusion in India: A comparative evaluation of Bass, Norton-Bass, Gompertz, and logistic growth models”," Technological Forecasting and Social Change, Elsevier, vol. 152(C).
    8. Jonathan Beck, 2007. "The sales effect of word of mouth: a model for creative goods and estimates for novels," Journal of Cultural Economics, Springer;The Association for Cultural Economics International, vol. 31(1), pages 5-23, March.
    9. Sergei Sidorov & Alexey Faizliev & Vladimir Balash & Olga Balash & Maria Krylova & Aleksandr Fomenko, 2021. "Extended innovation diffusion models and their empirical performance on real propagation data," Journal of Marketing Analytics, Palgrave Macmillan, vol. 9(2), pages 99-110, June.
    10. Baburin, Vyacheslav & Zemtsov, Stepan, 2014. "Diffussion of ICT-products and "five Russias"," MPRA Paper 68926, University Library of Munich, Germany, revised 10 May 2014.
    11. Dewenter, Ralf & Kruse, Jörn, 2011. "Calling party pays or receiving party pays? The diffusion of mobile telephony with endogenous regulation," Information Economics and Policy, Elsevier, vol. 23(1), pages 107-117, March.
    12. Goodwin, Paul & Meeran, Sheik & Dyussekeneva, Karima, 2014. "The challenges of pre-launch forecasting of adoption time series for new durable products," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1082-1097.
    13. Gamboa, Luis Fernando & Otero, Jesús, 0. "An estimation of the pattern of diffusion of mobile phones: The case of Colombia," Telecommunications Policy, Elsevier, vol. 33(10-11), pages 611-620, November.
    14. Yuri Peers & Dennis Fok & Philip Hans Franses, 2012. "Modeling Seasonality in New Product Diffusion," Marketing Science, INFORMS, vol. 31(2), pages 351-364, March.
    15. Bacha, Radia & Gasmi, Farid, 2022. "The broadband diffusion process and its determinants in Algeria: A simultaneous estimation," TSE Working Papers 22-1309, Toulouse School of Economics (TSE).
    16. Giovanni Pegoretti & Francesco Rentocchini & Giuseppe Vittucci Marzetti, 2012. "An agent-based model of innovation diffusion: network structure and coexistence under different information regimes," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 7(2), pages 145-165, October.
    17. Swinerd, Chris & McNaught, Ken R., 2015. "Comparing a simulation model with various analytic models of the international diffusion of consumer technology," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 330-343.
    18. Emanuele Giovannetti & Mohsen Hamoudia, 2022. "The interaction between direct and indirect network externalities in the early diffusion of mobile social networking," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 12(4), pages 617-642, December.
    19. Franses, Philip Hans, 2021. "Modeling box office revenues of motion pictures✰," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    20. Madden, Gary & Coble-Neal, Grant & Dalzell, Brian, 2004. "A dynamic model of mobile telephony subscription incorporating a network effect," Telecommunications Policy, Elsevier, vol. 28(2), pages 133-144, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:28:y:2012:i:3:p:587-606. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.