IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Influence of differentiated roles on group forecasting accuracy

  • Önkal, Dilek
  • Lawrence, Michael
  • Zeynep Sayım, K.
Registered author(s):

    While behavioral research on forecasting has mostly examined the individual forecaster, organizationally-based forecasting processes typically tend to rely on groups with members from different functional areas for arriving at ‘consensus’ forecasts. The forecasting performance could also vary depending on the particular group structuring utilized in reaching a final prediction. The current study compares the forecasting performance of modified consensus groups with that of staticized groups using formal role-playing. It is found that, when undistorted model forecasts are given, group forecasts (whether they are arrived at through averaging or by a detailed discussion of the forecasts) contribute positively to the forecasting accuracy. However, providing distorted initial forecasts affects the final accuracy with varying degrees of improvement over the initial forecasts. The results show a strong tendency to favor optimistic forecasts for both the staticized and modified consensus group forecasts. Overall, the role modifications are found to be successful in eliciting a differential adjustment behavior, effectively mimicking the disparities between different organizational roles. Current research suggests that group discussions may be an efficient method of displaying and resolving differential motivational contingencies, potentially leading to group forecasts that perform quite well.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207010000403
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal International Journal of Forecasting.

    Volume (Year): 27 (2011)
    Issue (Month): 1 ()
    Pages: 50-68

    as
    in new window

    Handle: RePEc:eee:intfor:v:27:y:2011:i:1:p:50-68
    Contact details of provider: Web page: http://www.elsevier.com/locate/ijforecast

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:27:y:2011:i:1:p:50-68. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.