IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v93y2020icp230-245.html
   My bibliography  Save this article

Optimal dynamic asset allocation for DC plan accumulation/decumulation: Ambition-CVAR

Author

Listed:
  • Forsyth, Peter A.

Abstract

We consider the late accumulation stage, followed by the full decumulation stage, of an investor in a defined contribution (DC) pension plan. The investor’s portfolio consists of a stock index and a bond index. As a measure of risk, we use conditional value at risk (CVAR) at the end of the decumulation stage. This is a measure of the risk of depleting the DC plan, which is primarily driven by sequence of return risk and asset allocation during the decumulation stage. As a measure of reward, we use Ambition, which we define to be the probability that the terminal wealth exceeds a specified level. We develop a method for computing the optimal dynamic asset allocation strategy which generates points on the efficient Ambition-CVAR frontier. By examining the Ambition-CVAR efficient frontier, we can determine points that are Median-CVAR optimal. We carry out numerical tests comparing the Median-CVAR optimal strategy to a benchmark constant proportion strategy. For a fixed median value (from the benchmark strategy) we find that the optimal Median-CVAR control significantly improves the CVAR. In addition, the median allocation to stocks at retirement is considerably smaller than the benchmark allocation to stocks.

Suggested Citation

  • Forsyth, Peter A., 2020. "Optimal dynamic asset allocation for DC plan accumulation/decumulation: Ambition-CVAR," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 230-245.
  • Handle: RePEc:eee:insuma:v:93:y:2020:i:c:p:230-245
    DOI: 10.1016/j.insmatheco.2020.05.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016766872030072X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2020.05.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James M. Poterba & Joshua Rauh & Steven F. Venti & David A. Wise, 2009. "Lifecycle Asset Allocation Strategies and the Distribution of 401(k) Retirement Wealth," NBER Chapters, in: Developments in the Economics of Aging, pages 15-50, National Bureau of Economic Research, Inc.
    2. Marcel Bräutigam & Montserrat Guillén & Jens P. Nielsen, 2017. "Facing Up to Longevity with Old Actuarial Methods: A Comparison of Pooled Funds and Income Tontines," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 42(3), pages 406-422, July.
    3. Elena Vigna, 2014. "On efficiency of mean--variance based portfolio selection in defined contribution pension schemes," Quantitative Finance, Taylor & Francis Journals, vol. 14(2), pages 237-258, February.
    4. Campanale, Claudio & Fugazza, Carolina & Gomes, Francisco, 2015. "Life-cycle portfolio choice with liquid and illiquid financial assets," Journal of Monetary Economics, Elsevier, vol. 71(C), pages 67-83.
    5. S. G. Kou, 2002. "A Jump-Diffusion Model for Option Pricing," Management Science, INFORMS, vol. 48(8), pages 1086-1101, August.
    6. Rupert, Peter & Zanella, Giulio, 2015. "Revisiting wage, earnings, and hours profiles," Journal of Monetary Economics, Elsevier, vol. 72(C), pages 114-130.
    7. Andreas Fagereng & Charles Gottlieb & Luigi Guiso, 2017. "Asset Market Participation and Portfolio Choice over the Life-Cycle," Journal of Finance, American Finance Association, vol. 72(2), pages 705-750, April.
    8. Dang, D.M. & Forsyth, P.A., 2016. "Better than pre-commitment mean-variance portfolio allocation strategies: A semi-self-financing Hamilton–Jacobi–Bellman equation approach," European Journal of Operational Research, Elsevier, vol. 250(3), pages 827-841.
    9. Van Staden, Pieter M. & Dang, Duy-Minh & Forsyth, Peter A., 2018. "Time-consistent mean–variance portfolio optimization: A numerical impulse control approach," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 9-28.
    10. Peijnenburg, Kim & Nijman, Theo & Werker, Bas J.M., 2016. "The annuity puzzle remains a puzzle," Journal of Economic Dynamics and Control, Elsevier, vol. 70(C), pages 18-35.
    11. Horneff, Vanya & Maurer, Raimond & Mitchell, Olivia S. & Rogalla, Ralph, 2015. "Optimal life cycle portfolio choice with variable annuities offering liquidity and investment downside protection," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 91-107.
    12. Hubert Dichtl & Wolfgang Drobetz & Martin Wambach, 2016. "Testing rebalancing strategies for stock-bond portfolios across different asset allocations," Applied Economics, Taylor & Francis Journals, vol. 48(9), pages 772-788, February.
    13. Blake, David & Wright, Douglas & Zhang, Yumeng, 2014. "Age-dependent investing: Optimal funding and investment strategies in defined contribution pension plans when members are rational life cycle financial planners," Journal of Economic Dynamics and Control, Elsevier, vol. 38(C), pages 105-124.
    14. Milevsky, Moshe A. & Salisbury, Thomas S., 2015. "Optimal retirement income tontines," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 91-105.
    15. Andrew Patton & Dimitris Politis & Halbert White, 2009. "Correction to “Automatic Block-Length Selection for the Dependent Bootstrap” by D. Politis and H. White," Econometric Reviews, Taylor & Francis Journals, vol. 28(4), pages 372-375.
    16. Gabriella Piscopo & Steven Haberman, 2011. "The Valuation of Guaranteed Lifelong Withdrawal Benefit Options in Variable Annuity Contracts and the Impact of Mortality Risk," North American Actuarial Journal, Taylor & Francis Journals, vol. 15(1), pages 59-76.
    17. Michael E. Drew & Anup Basu & Alistair Byrnes, 2009. "Dynamic Lifecycle Strategies for Target Date Retirement Funds," Discussion Papers in Finance finance:200902, Griffith University, Department of Accounting, Finance and Economics.
    18. S. G. Kou & Hui Wang, 2004. "Option Pricing Under a Double Exponential Jump Diffusion Model," Management Science, INFORMS, vol. 50(9), pages 1178-1192, September.
    19. David A. Wise, 2009. "Developments in the Economics of Aging," NBER Books, National Bureau of Economic Research, Inc, number wise09-1.
    20. Peter A. Forsyth & Kenneth R. Vetzal, 2017. "Dynamic mean variance asset allocation: Tests for robustness," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(02n03), pages 1-37, June.
    21. Dimitris Politis & Halbert White, 2004. "Automatic Block-Length Selection for the Dependent Bootstrap," Econometric Reviews, Taylor & Francis Journals, vol. 23(1), pages 53-70.
    22. Stefan Graf, 2017. "Life-cycle funds: Much Ado about Nothing?," The European Journal of Finance, Taylor & Francis Journals, vol. 23(11), pages 974-998, September.
    23. Michaelides, Alexander & Zhang, Yuxin, 2017. "Stock Market Mean Reversion and Portfolio Choice over the Life Cycle," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 52(3), pages 1183-1209, June.
    24. Bonnie-Jeanne MacDonald & Bruce Jones & Richard Morrison & Robert Brown & Mary Hardy, 2013. "Research and Reality: A Literature Review on Drawing Down Retirement Financial Savings," North American Actuarial Journal, Taylor & Francis Journals, vol. 17(3), pages 181-215.
    25. Cecilia Mancini, 2009. "Non‐parametric Threshold Estimation for Models with Stochastic Diffusion Coefficient and Jumps," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(2), pages 270-296, June.
    26. Lin, Yijia & MacMinn, Richard D. & Tian, Ruilin, 2015. "De-risking defined benefit plans," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 52-65.
    27. Joao F. Cocco, 2005. "Consumption and Portfolio Choice over the Life Cycle," The Review of Financial Studies, Society for Financial Studies, vol. 18(2), pages 491-533.
    28. Feng, Runhuan & Yi, Bingji, 2019. "Quantitative modeling of risk management strategies: Stochastic reserving and hedging of variable annuity guaranteed benefits," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 60-73.
    29. Peter A. Forsyth & Kenneth R. Vetzal, 2019. "Optimal Asset Allocation for Retirement Saving: Deterministic Vs. Time Consistent Adaptive Strategies," Applied Mathematical Finance, Taylor & Francis Journals, vol. 26(1), pages 1-37, January.
    30. Forsyth, Peter A. & Vetzal, Kenneth R. & Westmacott, Graham, 2020. "Optimal Asset Allocation For Dc Pension Decumulation With A Variable Spending Rule," ASTIN Bulletin, Cambridge University Press, vol. 50(2), pages 419-447, May.
    31. Li, Yuying & Forsyth, Peter A., 2019. "A data-driven neural network approach to optimal asset allocation for target based defined contribution pension plans," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 189-204.
    32. Peter A. Forsyth & Kenneth R. Vetzal & Graham Westmacott, 2019. "Management of Portfolio Depletion Risk through Optimal Life Cycle Asset Allocation," North American Actuarial Journal, Taylor & Francis Journals, vol. 23(3), pages 447-468, July.
    33. Gomes, Francisco & Fugazza, Carolina & Campanale, Claudio, 2015. "Life-Cycle Portfolio choice with Liquid and Illiquid Assets," CEPR Discussion Papers 10369, C.E.P.R. Discussion Papers.
    34. Giulio Zanella & Peter Rupert, 2010. "Revisiting Wage, Earnings, and Hours Profiles," 2010 Meeting Papers 1158, Society for Economic Dynamics.
    35. Forsyth, Peter & Vetzal, Kenneth, 2014. "An optimal stochastic control framework for determining the cost of hedging of variable annuities," Journal of Economic Dynamics and Control, Elsevier, vol. 44(C), pages 29-53.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chendi Ni & Yuying Li & Peter A. Forsyth, 2023. "Neural Network Approach to Portfolio Optimization with Leverage Constraints:a Case Study on High Inflation Investment," Papers 2304.05297, arXiv.org, revised May 2023.
    2. Gao, Jianjun & Li, Yaoming & Shi, Yun & Xie, Jinyan, 2024. "Multi-period portfolio choice under loss aversion with dynamic reference point in serially correlated market," Omega, Elsevier, vol. 127(C).
    3. Peter A. Forsyth & Kenneth R. Vetzal & Graham Westmacott, 2021. "Optimal control of the decumulation of a retirement portfolio with variable spending and dynamic asset allocation," Papers 2101.02760, arXiv.org.
    4. Forsyth, Peter A., 2022. "Short term decumulation strategies for underspending retirees," Insurance: Mathematics and Economics, Elsevier, vol. 102(C), pages 56-74.
    5. Peter A. Forsyth, 2020. "A Stochastic Control Approach to Defined Contribution Plan Decumulation: "The Nastiest, Hardest Problem in Finance"," Papers 2008.06598, arXiv.org.
    6. Peter A. Forsyth & Kenneth R. Vetzal & G. Westmacott, 2022. "Optimal performance of a tontine overlay subject to withdrawal constraints," Papers 2211.10509, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter A. Forsyth & Kenneth R. Vetzal & G. Westmacott, 2022. "Optimal performance of a tontine overlay subject to withdrawal constraints," Papers 2211.10509, arXiv.org.
    2. Peter A. Forsyth, 2020. "A Stochastic Control Approach to Defined Contribution Plan Decumulation: "The Nastiest, Hardest Problem in Finance"," Papers 2008.06598, arXiv.org.
    3. Peter A. Forsyth & Kenneth R. Vetzal & Graham Westmacott, 2021. "Optimal control of the decumulation of a retirement portfolio with variable spending and dynamic asset allocation," Papers 2101.02760, arXiv.org.
    4. Marc Chen & Mohammad Shirazi & Peter A. Forsyth & Yuying Li, 2023. "Machine Learning and Hamilton-Jacobi-Bellman Equation for Optimal Decumulation: a Comparison Study," Papers 2306.10582, arXiv.org.
    5. Forsyth, Peter A., 2022. "Short term decumulation strategies for underspending retirees," Insurance: Mathematics and Economics, Elsevier, vol. 102(C), pages 56-74.
    6. Peter A. Forsyth & Kenneth R. Vetzal, 2019. "Defined Contribution Pension Plans: Who Has Seen the Risk?," JRFM, MDPI, vol. 12(2), pages 1-27, April.
    7. Chendi Ni & Yuying Li & Peter A. Forsyth, 2023. "Neural Network Approach to Portfolio Optimization with Leverage Constraints:a Case Study on High Inflation Investment," Papers 2304.05297, arXiv.org, revised May 2023.
    8. Li, Yuying & Forsyth, Peter A., 2019. "A data-driven neural network approach to optimal asset allocation for target based defined contribution pension plans," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 189-204.
    9. Zhang, Hanwen & Dang, Duy-Minh, 2024. "A monotone numerical integration method for mean–variance portfolio optimization under jump-diffusion models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 219(C), pages 112-140.
    10. Chendi Ni & Yuying Li & Peter Forsyth & Ray Carroll, 2020. "Optimal Asset Allocation For Outperforming A Stochastic Benchmark Target," Papers 2006.15384, arXiv.org.
    11. Hanwen Zhang & Duy-Minh Dang, 2023. "A monotone numerical integration method for mean-variance portfolio optimization under jump-diffusion models," Papers 2309.05977, arXiv.org.
    12. Pieter van Staden & Peter Forsyth & Yuying Li, 2024. "Smart leverage? Rethinking the role of Leveraged Exchange Traded Funds in constructing portfolios to beat a benchmark," Papers 2412.05431, arXiv.org.
    13. Pieter M. van Staden & Peter A. Forsyth & Yuying Li, 2023. "A parsimonious neural network approach to solve portfolio optimization problems without using dynamic programming," Papers 2303.08968, arXiv.org.
    14. van Staden, Pieter M. & Dang, Duy-Minh & Forsyth, Peter A., 2021. "The surprising robustness of dynamic Mean-Variance portfolio optimization to model misspecification errors," European Journal of Operational Research, Elsevier, vol. 289(2), pages 774-792.
    15. van Staden, Pieter M. & Forsyth, Peter A. & Li, Yuying, 2024. "Across-time risk-aware strategies for outperforming a benchmark," European Journal of Operational Research, Elsevier, vol. 313(2), pages 776-800.
    16. Peter A. Forsyth & Kenneth R. Vetzal, 2017. "Dynamic mean variance asset allocation: Tests for robustness," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(02n03), pages 1-37, June.
    17. Van Staden, Pieter M. & Dang, Duy-Minh & Forsyth, Peter A., 2018. "Time-consistent mean–variance portfolio optimization: A numerical impulse control approach," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 9-28.
    18. Francisco Gomes & Michael Haliassos & Tarun Ramadorai, 2021. "Household Finance," Journal of Economic Literature, American Economic Association, vol. 59(3), pages 919-1000, September.
    19. Campanale Claudio & Fugazza Carolina, 2022. "Preference for Wealth and Life Cycle Portfolio Choice," Working papers 075, Department of Economics, Social Studies, Applied Mathematics and Statistics (Dipartimento di Scienze Economico-Sociali e Matematico-Statistiche), University of Torino.
    20. Andreas Tischbirek, 2019. "Long‐term government debt and household portfolio composition," Quantitative Economics, Econometric Society, vol. 10(3), pages 1109-1151, July.

    More about this item

    Keywords

    Optimal control; Ambition-CVAR; Asset allocation; DC plan; Resampled backtests;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:93:y:2020:i:c:p:230-245. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.