IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2006.15384.html
   My bibliography  Save this paper

Optimal Asset Allocation For Outperforming A Stochastic Benchmark Target

Author

Listed:
  • Chendi Ni
  • Yuying Li
  • Peter Forsyth
  • Ray Carroll

Abstract

We propose a data-driven Neural Network (NN) optimization framework to determine the optimal multi-period dynamic asset allocation strategy for outperforming a general stochastic target. We formulate the problem as an optimal stochastic control with an asymmetric, distribution shaping, objective function. The proposed framework is illustrated with the asset allocation problem in the accumulation phase of a defined contribution pension plan, with the goal of achieving a higher terminal wealth than a stochastic benchmark. We demonstrate that the data-driven approach is capable of learning an adaptive asset allocation strategy directly from historical market returns, without assuming any parametric model of the financial market dynamics. Following the optimal adaptive strategy, investors can make allocation decisions simply depending on the current state of the portfolio. The optimal adaptive strategy outperforms the benchmark constant proportion strategy, achieving a higher terminal wealth with a 90% probability, a 46% higher median terminal wealth, and a significantly more right-skewed terminal wealth distribution. We further demonstrate the robustness of the optimal adaptive strategy by testing the performance of the strategy on bootstrap resampled market data, which has different distributions compared to the training data.

Suggested Citation

  • Chendi Ni & Yuying Li & Peter Forsyth & Ray Carroll, 2020. "Optimal Asset Allocation For Outperforming A Stochastic Benchmark Target," Papers 2006.15384, arXiv.org.
  • Handle: RePEc:arx:papers:2006.15384
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2006.15384
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hejazi, Seyed Amir & Jackson, Kenneth R., 2016. "A neural network approach to efficient valuation of large portfolios of variable annuities," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 169-181.
    2. S. G. Kou, 2002. "A Jump-Diffusion Model for Option Pricing," Management Science, INFORMS, vol. 48(8), pages 1086-1101, August.
    3. Mark Davis & SEBastien Lleo, 2008. "Risk-sensitive benchmarked asset management," Quantitative Finance, Taylor & Francis Journals, vol. 8(4), pages 415-426.
    4. Dang, D.M. & Forsyth, P.A., 2016. "Better than pre-commitment mean-variance portfolio allocation strategies: A semi-self-financing Hamilton–Jacobi–Bellman equation approach," European Journal of Operational Research, Elsevier, vol. 250(3), pages 827-841.
    5. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
    6. Suleyman Basak & Alex Shapiro & Lucie Teplá, 2006. "Risk Management with Benchmarking," Management Science, INFORMS, vol. 52(4), pages 542-557, April.
    7. Ali Al-Aradi & Sebastian Jaimungal, 2018. "Outperformance and Tracking: Dynamic Asset Allocation for Active and Passive Portfolio Management," Applied Mathematical Finance, Taylor & Francis Journals, vol. 25(3), pages 268-294, May.
    8. Sid Browne, 2000. "Risk-Constrained Dynamic Active Portfolio Management," Management Science, INFORMS, vol. 46(9), pages 1188-1199, September.
    9. Seyed Amir Hejazi & Kenneth R. Jackson, 2016. "A Neural Network Approach to Efficient Valuation of Large Portfolios of Variable Annuities," Papers 1606.07831, arXiv.org.
    10. Tepla, Lucie, 2001. "Optimal investment with minimum performance constraints," Journal of Economic Dynamics and Control, Elsevier, vol. 25(10), pages 1629-1645, October.
    11. Alexander, S. & Coleman, T.F. & Li, Y., 2006. "Minimizing CVaR and VaR for a portfolio of derivatives," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 583-605, February.
    12. Aleksandr G. Alekseev & Mikhail V. Sokolov, 2016. "Benchmark-based evaluation of portfolio performance: a characterization," Annals of Finance, Springer, vol. 12(3), pages 409-440, December.
    13. Peter A. Forsyth & Kenneth R. Vetzal, 2019. "Optimal Asset Allocation for Retirement Saving: Deterministic Vs. Time Consistent Adaptive Strategies," Applied Mathematical Finance, Taylor & Francis Journals, vol. 26(1), pages 1-37, January.
    14. Andrew Patton & Dimitris Politis & Halbert White, 2009. "Correction to “Automatic Block-Length Selection for the Dependent Bootstrap” by D. Politis and H. White," Econometric Reviews, Taylor & Francis Journals, vol. 28(4), pages 372-375.
    15. S. G. Kou & Hui Wang, 2004. "Option Pricing Under a Double Exponential Jump Diffusion Model," Management Science, INFORMS, vol. 50(9), pages 1178-1192, September.
    16. Li, Yuying & Forsyth, Peter A., 2019. "A data-driven neural network approach to optimal asset allocation for target based defined contribution pension plans," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 189-204.
    17. Dimitris Politis & Halbert White, 2004. "Automatic Block-Length Selection for the Dependent Bootstrap," Econometric Reviews, Taylor & Francis Journals, vol. 23(1), pages 53-70.
    18. Stefan Graf, 2017. "Life-cycle funds: Much Ado about Nothing?," The European Journal of Finance, Taylor & Francis Journals, vol. 23(11), pages 974-998, September.
    19. Ali Al-Aradi & Sebastian Jaimungal, 2018. "Outperformance and Tracking: Dynamic Asset Allocation for Active and Passive Portfolio Management," Papers 1803.05819, arXiv.org, revised Jul 2018.
    20. Gianluca Oderda, 2015. "Stochastic portfolio theory optimization and the origin of rule-based investing," Quantitative Finance, Taylor & Francis Journals, vol. 15(8), pages 1259-1266, August.
    21. Lim, Andrew E.B. & Wong, Bernard, 2010. "A benchmarking approach to optimal asset allocation for insurers and pension funds," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 317-327, April.
    22. Yves-Laurent Kom Samo & Alexander Vervuurt, 2016. "Stochastic Portfolio Theory: A Machine Learning Perspective," Papers 1605.02654, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sebastian Jaimungal, 2022. "Reinforcement learning and stochastic optimisation," Finance and Stochastics, Springer, vol. 26(1), pages 103-129, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chendi Ni & Yuying Li & Peter A. Forsyth, 2023. "Neural Network Approach to Portfolio Optimization with Leverage Constraints:a Case Study on High Inflation Investment," Papers 2304.05297, arXiv.org, revised May 2023.
    2. van Staden, Pieter M. & Forsyth, Peter A. & Li, Yuying, 2024. "Across-time risk-aware strategies for outperforming a benchmark," European Journal of Operational Research, Elsevier, vol. 313(2), pages 776-800.
    3. Li, Yuying & Forsyth, Peter A., 2019. "A data-driven neural network approach to optimal asset allocation for target based defined contribution pension plans," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 189-204.
    4. Forsyth, Peter A., 2020. "Optimal dynamic asset allocation for DC plan accumulation/decumulation: Ambition-CVAR," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 230-245.
    5. Peter A. Forsyth & Kenneth R. Vetzal & G. Westmacott, 2022. "Optimal performance of a tontine overlay subject to withdrawal constraints," Papers 2211.10509, arXiv.org.
    6. Marc Chen & Mohammad Shirazi & Peter A. Forsyth & Yuying Li, 2023. "Machine Learning and Hamilton-Jacobi-Bellman Equation for Optimal Decumulation: a Comparison Study," Papers 2306.10582, arXiv.org.
    7. Peter A. Forsyth & Kenneth R. Vetzal & Graham Westmacott, 2021. "Optimal control of the decumulation of a retirement portfolio with variable spending and dynamic asset allocation," Papers 2101.02760, arXiv.org.
    8. Ali Al-Aradi & Sebastian Jaimungal, 2019. "Active and Passive Portfolio Management with Latent Factors," Papers 1903.06928, arXiv.org.
    9. Forsyth, Peter A., 2022. "Short term decumulation strategies for underspending retirees," Insurance: Mathematics and Economics, Elsevier, vol. 102(C), pages 56-74.
    10. Peter A. Forsyth, 2020. "A Stochastic Control Approach to Defined Contribution Plan Decumulation: "The Nastiest, Hardest Problem in Finance"," Papers 2008.06598, arXiv.org.
    11. Hanwen Zhang & Duy-Minh Dang, 2023. "A monotone numerical integration method for mean-variance portfolio optimization under jump-diffusion models," Papers 2309.05977, arXiv.org.
    12. Zhang, Hanwen & Dang, Duy-Minh, 2024. "A monotone numerical integration method for mean–variance portfolio optimization under jump-diffusion models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 219(C), pages 112-140.
    13. Pieter M. van Staden & Peter A. Forsyth & Yuying Li, 2023. "A parsimonious neural network approach to solve portfolio optimization problems without using dynamic programming," Papers 2303.08968, arXiv.org.
    14. Peter A. Forsyth & Kenneth R. Vetzal, 2019. "Defined Contribution Pension Plans: Who Has Seen the Risk?," JRFM, MDPI, vol. 12(2), pages 1-27, April.
    15. Ali Al-Aradi & Sebastian Jaimungal, 2018. "Outperformance and Tracking: Dynamic Asset Allocation for Active and Passive Portfolio Management," Papers 1803.05819, arXiv.org, revised Jul 2018.
    16. Ali Al-Aradi & Sebastian Jaimungal, 2018. "Outperformance and Tracking: Dynamic Asset Allocation for Active and Passive Portfolio Management," Applied Mathematical Finance, Taylor & Francis Journals, vol. 25(3), pages 268-294, May.
    17. Alexander Alekseev & Mikhail Sokolov, 2016. "Portfolio Return Relative to a Benchmark," EUSP Department of Economics Working Paper Series Ec-04/16, European University at St. Petersburg, Department of Economics.
    18. van Staden, Pieter M. & Dang, Duy-Minh & Forsyth, Peter A., 2021. "The surprising robustness of dynamic Mean-Variance portfolio optimization to model misspecification errors," European Journal of Operational Research, Elsevier, vol. 289(2), pages 774-792.
    19. Lim, Andrew E.B. & Wong, Bernard, 2010. "A benchmarking approach to optimal asset allocation for insurers and pension funds," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 317-327, April.
    20. Peter A. Forsyth & Kenneth R. Vetzal, 2017. "Dynamic mean variance asset allocation: Tests for robustness," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(02n03), pages 1-37, June.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2006.15384. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.